README.md 3.38 KB
Newer Older
Nathan Ng's avatar
Nathan Ng committed
1
2
3
4
5
6
7
8
# WMT 19

This page provides pointers to the models of Facebook-FAIR's WMT'19 news translation task submission [(Ng et al., 2019)](https://arxiv.org/abs/1907.06616).

## Pre-trained models

Description | Model
---|---
Nathan Ng's avatar
Nathan Ng committed
9
10
11
12
13
14
15
En->De Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz)
De->En Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz)
En->Ru Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz)
Ru->En Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz)
En LM | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.gz)
De LM | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.gz)
Ru LM | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.gz)
Nathan Ng's avatar
Nathan Ng committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

## Example usage (torch.hub)

```
>>> import torch
>>> en2de = torch.hub.load(
...   'pytorch/fairseq',
...   'transformer.wmt19.en-de',
...   checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> en2de.generate("Machine learning is great!")
'Maschinelles Lernen ist großartig!'

>>> de2en = torch.hub.load(
...   'pytorch/fairseq',
...   'transformer.wmt19.de-en',
...   checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> de2en.generate("Maschinelles Lernen ist großartig!")
'Machine learning is great!'

>>> en2ru = torch.hub.load(
...   'pytorch/fairseq',
...   'transformer.wmt19.en-ru',
...   checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> en2ru.generate("Machine learning is great!")
'Машинное обучение - это здорово!'

>>> ru2en = torch.hub.load(
...   'pytorch/fairseq',
...   'transformer.wmt19.ru-en',
...   checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> ru2en.generate("Машинное обучение - это здорово!")
'Machine learning is great!'

>>> en_lm = torch.hub.load(
...   'pytorch.fairseq',
...   'transformer_lm.wmt19.en'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> en_lm.generate("Machine learning is")
'Machine learning is the future of computing, says Microsoft boss Satya Nadella ...'

>>> de_lm = torch.hub.load(
...   'pytorch.fairseq',
...   'transformer_lm.wmt19.de'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> de_lm.generate("Maschinelles lernen ist")
''Maschinelles lernen ist das A und O (neues-deutschland.de) Die Arbeitsbedingungen für Lehrerinnen und Lehrer sind seit Jahren verbesserungswürdig ...'

>>> ru_lm = torch.hub.load(
...   'pytorch.fairseq',
...   'transformer_lm.wmt19.ru'
...   tokenizer='moses',
...   bpe='fastbpe',
... )
>>> ru_lm.generate("машинное обучение это")
'машинное обучение это то, что мы называем "искусственным интеллектом".'
```

## Citation
```bibtex
@inproceedings{ng2019facebook},
  title = {Facebook FAIR's WMT19 News Translation Task Submission},
Nathan Ng's avatar
Nathan Ng committed
93
94
  author = {Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
  booktitle = {Proc. of WMT},
Nathan Ng's avatar
Nathan Ng committed
95
96
97
  year = 2019,
}
```