test_bmuf.py 4.45 KB
Newer Older
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

Nayan Singhal's avatar
Nayan Singhal committed
6
import argparse
7
from multiprocessing import Manager
Nayan Singhal's avatar
Nayan Singhal committed
8
9
10
11
12
import random
import unittest

import torch
import torch.nn as nn
13

Nayan Singhal's avatar
Nayan Singhal committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from fairseq import distributed_utils, optim


class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        return output


def setup_model_loss_criterion(args, rank, is_cuda):
    """
    setup model, criterion and optimizer based on input args
    """
    args.distributed_rank = rank
    distributed_utils.distributed_init(args)
    torch.manual_seed(1)
    model = Model(args.input_size, args.nb_classes)
    loss_fn = nn.CrossEntropyLoss()
    if is_cuda:
        model = model.cuda()
        loss_fn = loss_fn.cuda()

    optimizer = optim.sgd.SGD(args, model.parameters())
    optimizer = optim.FairseqBMUF(args, optimizer)

    return model, loss_fn, optimizer


def train_step(input, target, model, loss_fn, optimizer):
    """Do forward, backward and parameter update."""
    model.train()
    output = model(input)
    loss = loss_fn(output, target)
    optimizer.backward(loss)
    optimizer.step()


def single_gpu_training(args, rank, iterations, shared_results):

    is_cuda = torch.cuda.is_available()
    if is_cuda:
        torch.cuda.set_device(rank)

    model, loss_fn, optimizer = setup_model_loss_criterion(args, rank, is_cuda)

    for _ in range(iterations):
        input = torch.randn(1, args.input_size)
        target = torch.empty(args.batch_size, dtype=torch.long).random_(args.nb_classes)

        if is_cuda:
            input = input.cuda()
            target = target.cuda()
        train_step(input, target, model, loss_fn, optimizer)

    results = []
    for param in model.parameters():
        if len(results) == 0:
            results = param.flatten().cpu().data
        else:
            results = torch.cat((results, param.flatten().cpu().data), 0)

    shared_results[rank] = results


def setup_args():
    args = argparse.Namespace()
    args.global_sync_iter = 20
    args.block_momentum = 0.875
    args.block_lr = 0.5
    args.input_size = 5
    args.nb_classes = 2
    args.batch_size = 1
    args.lr = [1e-3]
    args.momentum = 0
    args.weight_decay = 0
    args.warmup_iterations = 0
    args.use_nbm = True
    args.average_sync = True
    args.global_sync_iter = 1
    args.distributed_backend = "gloo"

    args.distributed_world_size = 2
    port = random.randint(10000, 20000)
    args.distributed_init_method = "tcp://localhost:{port}".format(port=port)
    args.distributed_init_host = "localhost"
    args.distributed_port = port + 1
    args.local_world_size = args.distributed_world_size
    return args


class TestBMUF(unittest.TestCase):
    def bmuf_process(self, args, iterations):
        processes = []
        results = Manager().dict()
        ctx = torch.multiprocessing.get_context("spawn")
        for rank in range(args.distributed_world_size):
            p = ctx.Process(
                target=single_gpu_training, args=(args, rank, iterations, results)
            )
            p.start()
            processes.append(p)

        for p in processes:
            p.join()

        # Make sure params in both machines are same
        assert len(results) == 2
        self.assertAlmostEqual(results[0], results[1])

    def test_bmuf_sync(self):
        # Train model for 1 iteration and do bmuf sync without doing warmup
        args = setup_args()
        iterations = 1
        self.bmuf_process(args, iterations)

    def test_warmup_sync(self):
        # Train model for 20 iteration and do warmup sync without doing bmuf sync
        args = setup_args()
        args.warmup_iterations = 20
        iterations = 20
        self.bmuf_process(args, iterations)

    def test_warmup_sync_bmuf_sync(self):
        # Train model for 25 iteration and do warmup sync after 20 iteration
        # and bmuf sync after 25 iteration
        args = setup_args()
        args.warmup_iterations = 20
        args.global_sync_iter = 5
        iterations = 25
        self.bmuf_process(args, iterations)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)
152
153
154
155


if __name__ == '__main__':
    unittest.main()