masked_lm.py 4.61 KB
Newer Older
Naman Goyal's avatar
Naman Goyal committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import itertools
import numpy as np
import os

from fairseq import tokenizer
from fairseq.data import (
    ConcatDataset,
Myle Ott's avatar
Myle Ott committed
15
    indexed_dataset,
Naman Goyal's avatar
Naman Goyal committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    data_utils,
)

from fairseq.data import Dictionary
from fairseq.data.block_pair_dataset import BlockPairDataset
from fairseq.data.masked_lm_dataset import MaskedLMDataset
from fairseq.data.masked_lm_dictionary import BertDictionary

from . import FairseqTask, register_task


@register_task('masked_lm')
class MaskedLMTask(FairseqTask):
    """
    Task for training Masked LM (BERT) model.
    Args:
        dictionary (Dictionary): the dictionary for the input of the task
    """

    @staticmethod
    def add_args(parser):
        """Add task-specific arguments to the parser."""
        parser.add_argument('data', help='colon separated path to data directories list, \
                            will be iterated upon during epochs in round-robin manner')
        parser.add_argument('--tokens-per-sample', default=512, type=int,
                            help='max number of total tokens over all segments'
                                 ' per sample for BERT dataset')
        parser.add_argument('--break-mode', default="doc", type=str, help='mode for breaking sentence')

    def __init__(self, args, dictionary):
        super().__init__(args)
        self.dictionary = dictionary
        self.seed = args.seed

    @classmethod
    def load_dictionary(cls, filename):
        return BertDictionary.load(filename)

    @classmethod
    def build_dictionary(cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8):
        d = BertDictionary()
        for filename in filenames:
            Dictionary.add_file_to_dictionary(filename, d, tokenizer.tokenize_line, workers)
        d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor)
        return d

    @property
    def target_dictionary(self):
        return self.dictionary

    @classmethod
    def setup_task(cls, args, **kwargs):
        """Setup the task.
        """
        paths = args.data.split(':')
        assert len(paths) > 0
        dictionary = BertDictionary.load(os.path.join(paths[0], 'dict.txt'))
        print('| dictionary: {} types'.format(len(dictionary)))

        return cls(args, dictionary)

    def load_dataset(self, split, epoch=0, combine=False):
        """Load a given dataset split.
        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        loaded_datasets = []

        paths = self.args.data.split(':')
        assert len(paths) > 0
        data_path = paths[epoch % len(paths)]
        print("| data_path", data_path)

        for k in itertools.count():
            split_k = split + (str(k) if k > 0 else '')
            path = os.path.join(data_path, split_k)
Myle Ott's avatar
Myle Ott committed
92
93
94
95
96
97
98
99
            ds = indexed_dataset.make_dataset(
                path,
                impl=self.args.dataset_impl,
                fix_lua_indexing=True,
                dictionary=self.dictionary,
            )

            if ds is None:
Naman Goyal's avatar
Naman Goyal committed
100
101
102
103
                if k > 0:
                    break
                else:
                    raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path))
Myle Ott's avatar
Myle Ott committed
104

Naman Goyal's avatar
Naman Goyal committed
105
106
107
108
109
110
111
112
113
            with data_utils.numpy_seed(self.seed + k):
                loaded_datasets.append(
                    BlockPairDataset(
                        ds,
                        self.dictionary,
                        ds.sizes,
                        self.args.tokens_per_sample,
                        break_mode=self.args.break_mode,
                        doc_break_size=1,
Myle Ott's avatar
Myle Ott committed
114
115
                    )
                )
Naman Goyal's avatar
Naman Goyal committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

            print('| {} {} {} examples'.format(data_path, split_k, len(loaded_datasets[-1])))

            if not combine:
                break

        if len(loaded_datasets) == 1:
            dataset = loaded_datasets[0]
            sizes = dataset.sizes
        else:
            dataset = ConcatDataset(loaded_datasets)
            sizes = np.concatenate([ds.sizes for ds in loaded_datasets])

        self.datasets[split] = MaskedLMDataset(
            dataset=dataset,
            sizes=sizes,
            vocab=self.dictionary,
            pad_idx=self.dictionary.pad(),
            mask_idx=self.dictionary.mask(),
            classif_token_idx=self.dictionary.cls(),
            sep_token_idx=self.dictionary.sep(),
            shuffle=True,
            seed=self.seed,
        )