transformer.py 17.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from fairseq.data import LanguagePairDataset
from fairseq.modules import (
    LayerNorm, LearnedPositionalEmbedding, MultiheadAttention,
    SinusoidalPositionalEmbedding,
)
18
from fairseq import utils
Myle Ott's avatar
Myle Ott committed
19
20

from . import (
21
    FairseqIncrementalDecoder, FairseqEncoder, FairseqModel,
Myle Ott's avatar
Myle Ott committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    register_model, register_model_architecture,
)


@register_model('transformer')
class TransformerModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument('--dropout', default=0.1, type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--attention-dropout', default=0., type=float, metavar='D',
                            help='dropout probability for attention weights')
        parser.add_argument('--relu-dropout', default=0., type=float, metavar='D',
                            help='dropout probability after ReLU in FFN')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension for FFN')
        parser.add_argument('--encoder-layers', type=int, metavar='N',
                            help='num encoder layers')
        parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
                            help='num encoder attention heads')
        parser.add_argument('--encoder-normalize-before', default=False, action='store_true',
                            help='apply layernorm before each encoder block')
        parser.add_argument('--encoder-learned-pos', default=False, action='store_true',
                            help='use learned positional embeddings in the encoder')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension for FFN')
        parser.add_argument('--decoder-layers', type=int, metavar='N',
                            help='num decoder layers')
        parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
                            help='num decoder attention heads')
        parser.add_argument('--decoder-learned-pos', default=False, action='store_true',
                            help='use learned positional embeddings in the decoder')
        parser.add_argument('--decoder-normalize-before', default=False, action='store_true',
                            help='apply layernorm before each decoder block')
        parser.add_argument('--share-decoder-input-output-embed', default=False, action='store_true',
                            help='share decoder input and output embeddings')
        parser.add_argument('--share-all-embeddings', default=False, action='store_true',
                            help='share encoder, decoder and output embeddings'
                                 ' (requires shared dictionary and embed dim)')

    @classmethod
    def build_model(cls, args, src_dict, dst_dict):
        """Build a new model instance."""

        def build_embedding(dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            return Embedding(num_embeddings, embed_dim, padding_idx)

        if args.share_all_embeddings:
            if src_dict != dst_dict:
                raise RuntimeError('--share-all-embeddings requires a joined dictionary')
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise RuntimeError(
                    '--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim')
            encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim)
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = build_embedding(src_dict, args.encoder_embed_dim)
            decoder_embed_tokens = build_embedding(dst_dict, args.decoder_embed_dim)

92
93
        encoder = TransformerEncoder(args, src_dict, encoder_embed_tokens)
        decoder = TransformerDecoder(args, dst_dict, decoder_embed_tokens)
Myle Ott's avatar
Myle Ott committed
94
95
96
97
98
        return TransformerModel(encoder, decoder)


class TransformerEncoder(FairseqEncoder):
    """Transformer encoder."""
99
    def __init__(self, args, dictionary, embed_tokens):
Myle Ott's avatar
Myle Ott committed
100
        super().__init__(dictionary)
101
        self.dropout = args.dropout
Myle Ott's avatar
Myle Ott committed
102
103
104
105
106
107
108
109
110

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx

        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(embed_dim)
        self.embed_positions = PositionalEmbedding(
            1024, embed_dim, self.padding_idx,
            left_pad=LanguagePairDataset.LEFT_PAD_SOURCE,
111
            learned=args.encoder_learned_pos,
Myle Ott's avatar
Myle Ott committed
112
113
114
115
        )

        self.layers = nn.ModuleList([])
        self.layers.extend([
116
117
            TransformerEncoderLayer(args)
            for i in range(args.encoder_layers)
Myle Ott's avatar
Myle Ott committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        ])

        self.reset_parameters()

    def reset_parameters(self):
        for name, p in self.named_parameters():
            if name.endswith('weight'):
                nn.init.xavier_uniform(p.data)
            elif name.endswith('bias'):
                p.data.zero_()

    def forward(self, src_tokens, src_lengths):
        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(src_tokens)
        x += self.embed_positions(src_tokens)
        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # compute padding mask
        encoder_padding_mask = src_tokens.eq(self.padding_idx)

        # encoder layers
        for layer in self.layers:
            x = layer(x, encoder_padding_mask)

        return {
            'encoder_out': x,  # T x B x C
            'encoder_padding_mask': encoder_padding_mask,  # B x T
        }

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return self.embed_positions.max_positions()

154
155
156
157
158
159
160
161
    def upgrade_state_dict(self, state_dict):
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            if 'encoder.embed_positions.weights' in state_dict:
                del state_dict['encoder.embed_positions.weights']
            if 'encoder.embed_positions._float_tensor' not in state_dict:
                state_dict['encoder.embed_positions._float_tensor'] = torch.FloatTensor()
        return state_dict

Myle Ott's avatar
Myle Ott committed
162

163
class TransformerDecoder(FairseqIncrementalDecoder):
Myle Ott's avatar
Myle Ott committed
164
    """Transformer decoder."""
165
    def __init__(self, args, dictionary, embed_tokens):
Myle Ott's avatar
Myle Ott committed
166
        super().__init__(dictionary)
167
168
        self.dropout = args.dropout
        self.share_input_output_embed = args.share_decoder_input_output_embed
Myle Ott's avatar
Myle Ott committed
169
170
171
172
173
174
175
176
177

        embed_dim = embed_tokens.embedding_dim
        padding_idx = embed_tokens.padding_idx

        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(embed_dim)
        self.embed_positions = PositionalEmbedding(
            1024, embed_dim, padding_idx,
            left_pad=LanguagePairDataset.LEFT_PAD_TARGET,
178
            learned=args.decoder_learned_pos,
Myle Ott's avatar
Myle Ott committed
179
180
181
182
        )

        self.layers = nn.ModuleList([])
        self.layers.extend([
183
184
            TransformerDecoderLayer(args)
            for i in range(args.decoder_layers)
Myle Ott's avatar
Myle Ott committed
185
186
        ])

187
        if not self.share_input_output_embed:
Myle Ott's avatar
Myle Ott committed
188
189
190
191
192
193
194
195
196
197
198
            self.embed_out = nn.Parameter(torch.Tensor(len(dictionary), embed_dim))

        self.reset_parameters()

    def reset_parameters(self):
        for name, p in self.named_parameters():
            if name.endswith('weight'):
                nn.init.xavier_uniform(p.data)
            elif name.endswith('bias'):
                p.data.zero_()

199
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
Myle Ott's avatar
Myle Ott committed
200
        # embed positions
201
202
203
204
205
206
207
208
        positions = self.embed_positions(
            prev_output_tokens,
            incremental_state=incremental_state,
        )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            positions = positions[:, -1:]
Myle Ott's avatar
Myle Ott committed
209
210
211
212
213
214
215
216
217
218
219

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)
        x += positions
        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # decoder layers
        for layer in self.layers:
220
221
222
223
224
225
            x, attn = layer(
                        x,
                        encoder_out['encoder_out'],
                        encoder_out['encoder_padding_mask'],
                        incremental_state,
                    )
Myle Ott's avatar
Myle Ott committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        # project back to size of vocabulary
        if self.share_input_output_embed:
            x = F.linear(x, self.embed_tokens.weight)
        else:
            x = F.linear(x, self.embed_out)

        return x, attn

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        return self.embed_positions.max_positions()

242
243
244
245
246
247
248
249
    def upgrade_state_dict(self, state_dict):
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            if 'decoder.embed_positions.weights' in state_dict:
                del state_dict['decoder.embed_positions.weights']
            if 'decoder.embed_positions._float_tensor' not in state_dict:
                state_dict['decoder.embed_positions._float_tensor'] = torch.FloatTensor()
        return state_dict

Myle Ott's avatar
Myle Ott committed
250
251
252
253
254
255
256
257
258
259
260
261

class TransformerEncoderLayer(nn.Module):
    """Encoder layer block.

    In the original paper each operation (multi-head attention or FFN) is
    postprocessed with: dropout -> add residual -> layernorm.
    In the tensor2tensor code they suggest that learning is more robust when
    preprocessing each layer with layernorm and postprocessing with:
    dropout -> add residual.
    We default to the approach in the paper, but the tensor2tensor approach can
    be enabled by setting `normalize_before=True`.
    """
262
    def __init__(self, args):
Myle Ott's avatar
Myle Ott committed
263
        super().__init__()
264
265
266
267
268
269
270
271
272
273
274
        self.embed_dim = args.encoder_embed_dim
        self.self_attn = MultiheadAttention(
            self.embed_dim, args.encoder_attention_heads,
            dropout=args.attention_dropout,
        )
        self.dropout = args.dropout
        self.relu_dropout = args.relu_dropout
        self.normalize_before = args.encoder_normalize_before
        self.fc1 = nn.Linear(self.embed_dim, args.encoder_ffn_embed_dim)
        self.fc2 = nn.Linear(args.encoder_ffn_embed_dim, self.embed_dim)
        self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for i in range(2)])
Myle Ott's avatar
Myle Ott committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    def forward(self, x, encoder_padding_mask):
        residual = x
        x = self.maybe_layer_norm(0, x, before=True)
        x, _ = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(0, x, after=True)

        residual = x
        x = self.maybe_layer_norm(1, x, before=True)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, p=self.relu_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(1, x, after=True)
        return x

    def maybe_layer_norm(self, i, x, before=False, after=False):
        assert before ^ after
        if after ^ self.normalize_before:
            return self.layer_norms[i](x)
        else:
            return x


class TransformerDecoderLayer(nn.Module):
    """Decoder layer block."""
304
    def __init__(self, args):
Myle Ott's avatar
Myle Ott committed
305
        super().__init__()
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        self.embed_dim = args.decoder_embed_dim
        self.self_attn = MultiheadAttention(
            self.embed_dim, args.decoder_attention_heads,
            dropout=args.attention_dropout,
        )
        self.dropout = args.dropout
        self.relu_dropout = args.relu_dropout
        self.normalize_before = args.encoder_normalize_before
        self.encoder_attn = MultiheadAttention(
            self.embed_dim, args.decoder_attention_heads,
            dropout=args.attention_dropout,
        )
        self.fc1 = nn.Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = nn.Linear(args.decoder_ffn_embed_dim, self.embed_dim)
        self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for i in range(3)])
Myle Ott's avatar
Myle Ott committed
321

322
    def forward(self, x, encoder_out, encoder_padding_mask, incremental_state):
Myle Ott's avatar
Myle Ott committed
323
324
        residual = x
        x = self.maybe_layer_norm(0, x, before=True)
325
326
327
328
329
330
331
332
333

        x, _ = self.self_attn(
                query=x,
                key=x,
                value=x,
                mask_future_timesteps=True,
                incremental_state=incremental_state,
                need_weights=False,
            )
Myle Ott's avatar
Myle Ott committed
334
335
336
337
338
339
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(0, x, after=True)

        residual = x
        x = self.maybe_layer_norm(1, x, before=True)
340
341
342
343
344
345
346
347
348
349

        x, attn = self.encoder_attn(
            query=x,
            key=encoder_out,
            value=encoder_out,
            key_padding_mask=encoder_padding_mask,
            incremental_state=incremental_state,
            static_kv=True,
        )

Myle Ott's avatar
Myle Ott committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(1, x, after=True)

        residual = x
        x = self.maybe_layer_norm(2, x, before=True)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, p=self.relu_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(2, x, after=True)
        return x, attn

    def maybe_layer_norm(self, i, x, before=False, after=False):
        assert before ^ after
        if after ^ self.normalize_before:
            return self.layer_norms[i](x)
        else:
            return x


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    m.weight.data.normal_(mean=0, std=embedding_dim**-0.5)
    return m


def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad, learned=False):
    if learned:
        m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad)
        m.weight.data.normal_(0, 0.1)
    else:
        m = SinusoidalPositionalEmbedding(embedding_dim, padding_idx, left_pad, init_size=num_embeddings)
    return m


@register_model_architecture('transformer', 'transformer')
def base_architecture(args):
    args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512)
    args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 2048)
    args.encoder_layers = getattr(args, 'encoder_layers', 6)
    args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 8)
    args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim)
    args.decoder_layers = getattr(args, 'decoder_layers', 6)
    args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 8)


@register_model_architecture('transformer', 'transformer_iwslt_de_en')
def transformer_iwslt_de_en(args):
    base_architecture(args)
    args.encoder_embed_dim = 256
    args.encoder_ffn_embed_dim = 512
    args.encoder_layers = 3
    args.encoder_attention_heads = 4
    args.decoder_embed_dim = 256
    args.decoder_ffn_embed_dim = 512
    args.decoder_layers = 3
    args.decoder_attention_heads = 4


@register_model_architecture('transformer', 'transformer_wmt_en_de')
def transformer_wmt_en_de(args):
    base_architecture(args)
    args.encoder_embed_dim = 512
    args.encoder_ffn_embed_dim = 2048
    args.encoder_layers = 6
    args.encoder_attention_heads = 8
    args.decoder_embed_dim = 512
    args.decoder_ffn_embed_dim = 2048
    args.decoder_layers = 6
    args.decoder_attention_heads = 8


@register_model_architecture('transformer', 'transformer_wmt_en_de_big')
def transformer_wmt_en_de_big(args):
    base_architecture(args)
    args.encoder_embed_dim = 1024
    args.encoder_ffn_embed_dim = 4096
    args.encoder_layers = 6
    args.encoder_attention_heads = 16
    args.decoder_embed_dim = 1024
    args.decoder_ffn_embed_dim = 4096
    args.decoder_layers = 6
    args.decoder_attention_heads = 16


@register_model_architecture('transformer', 'transformer_wmt_en_de_big_t2t')
def transformer_wmt_en_de_big_t2t(args):
    base_architecture(args)
    args.encoder_embed_dim = 1024
    args.encoder_ffn_embed_dim = 4096
    args.encoder_layers = 6
    args.encoder_attention_heads = 16
    args.encoder_normalize_before = True
    args.decoder_embed_dim = 1024
    args.decoder_ffn_embed_dim = 4096
    args.decoder_layers = 6
    args.decoder_attention_heads = 16
    args.decoder_normalize_before = True
    args.attention_dropout = 0.1
    args.relu_dropout = 0.1