README.wsc.md 3.61 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Finetuning RoBERTa on Winograd Schema Challenge (WSC) data

The following instructions can be used to finetune RoBERTa on the WSC training
data provided by [SuperGLUE](https://super.gluebenchmark.com/).

Note that there is high variance in the results. For our GLUE/SuperGLUE
submission we swept over the learning rate, batch size and total number of
updates, as well as the random seed. Out of ~100 runs we chose the best 7 models
and ensembled them.

**Note:** The instructions below use a slightly different loss function than
what's described in the original RoBERTa arXiv paper. In particular,
[Kocijan et al. (2019)](https://arxiv.org/abs/1905.06290) introduce a margin
ranking loss between `(query, candidate)` pairs with tunable hyperparameters
alpha and beta. This is supported in our code as well with the `--wsc-alpha` and
`--wsc-beta` arguments. However, we achieved slightly better (and more robust)
results on the development set by instead using a single cross entropy loss term
over the log-probabilities for the query and all candidates. This reduces the
number of hyperparameters and our best model achieved 92.3% development set
accuracy, compared to ~90% accuracy for the margin loss. Later versions of the
RoBERTa arXiv paper will describe this updated formulation.

### 1) Download the WSC data from the SuperGLUE website:
```bash
wget https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip
unzip WSC.zip

# we also need to copy the RoBERTa dictionary into the same directory
wget -O WSC/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
```

### 2) Finetune over the provided training data:
```bash
TOTAL_NUM_UPDATES=2000  # Total number of training steps.
WARMUP_UPDATES=250      # Linearly increase LR over this many steps.
LR=2e-05                # Peak LR for polynomial LR scheduler.
MAX_SENTENCES=16        # Batch size per GPU.
SEED=1                  # Random seed.
ROBERTA_PATH=/path/to/roberta/model.pt

# we use the --user-dir option to load the task and criterion
# from the examples/roberta/wsc directory:
FAIRSEQ_PATH=/path/to/fairseq
FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc

cd fairseq
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train WSC/ \
  --restore-file $ROBERTA_PATH \
  --reset-optimizer --reset-dataloader --reset-meters \
  --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \
  --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
  --valid-subset val \
  --fp16 --ddp-backend no_c10d \
  --user-dir $FAIRSEQ_USER_DIR \
  --task wsc --criterion wsc --wsc-cross-entropy \
  --arch roberta_large --bpe gpt2 --max-positions 512 \
  --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
  --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \
  --lr-scheduler polynomial_decay --lr $LR \
  --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \
  --max-sentences $MAX_SENTENCES \
  --max-update $TOTAL_NUM_UPDATES \
  --log-format simple --log-interval 100
```

The above command assumes training on 4 GPUs, but you can achieve the same
results on a single GPU by adding `--update-freq=4`.

### 3) Evaluate
```python
from fairseq.models.roberta import RobertaModel
from examples.roberta.wsc import wsc_utils  # also loads WSC task and criterion
roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'WSC/')
roberta.cuda()
nsamples, ncorrect = 0, 0
for sentence, label in wsc_utils.jsonl_iterator('WSC/val.jsonl', eval=True):
    pred = roberta.disambiguate_pronoun(sentence)
    nsamples += 1
    if pred == label:
        ncorrect += 1
print('Accuracy: ' + str(ncorrect / float(nsamples)))
# Accuracy: 0.9230769230769231
```