train.py 8.91 KB
Newer Older
Sergey Edunov's avatar
Sergey Edunov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

from fairseq import bleu, data, options, utils
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar
from fairseq.sequence_generator import SequenceGenerator


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    dataset_args.add_argument('--test-subset', default='test', metavar='SPLIT',
                              help='comma separated list ofdata subset '
                                   'to use for testing (train, valid, test)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

39
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
    dataset = data.load_with_check(args.data, args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in dataset.splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(num_gpus, args.max_tokens))

    # Build model
    print('| model {}'.format(args.arch))
    model = utils.build_model(args, dataset)
    criterion = utils.build_criterion(args, dataset)

    # Start multiprocessing
    trainer = MultiprocessingTrainer(args, model)

    # Load the latest checkpoint if one is available
    epoch, batch_offset = trainer.load_checkpoint(os.path.join(args.save_dir, args.restore_file))

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
        train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus)

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
            val_loss = validate(args, epoch, trainer, criterion, dataset, subset, num_gpus)
            if k == 0:
                if not args.no_save:
                    # save checkpoint
                    trainer.save_checkpoint(args, epoch, 0, val_loss)
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Generate on test set and compute BLEU score
    for beam in [1, 5, 10, 20]:
        for subset in args.test_subset.split(','):
            scorer = score_test(args, trainer.get_model(), dataset, subset, beam,
                                cuda_device=(0 if num_gpus > 0 else None))
            print('| Test on {} with beam={}: {}'.format(subset, beam, scorer.result_string()))

    # Stop multiprocessing
    trainer.stop()


def train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus):
    """Train the model for one epoch."""

    itr = dataset.dataloader(args.train_subset, num_workers=args.workers,
                             max_tokens=args.max_tokens, seed=args.seed, epoch=epoch,
                             max_positions=args.max_positions,
                             sample_without_replacement=args.sample_without_replacement)
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
    gnorm_meter = AverageMeter()  # gradient norm

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
            loss, grad_norm = trainer.train_step(sample, criterion)

            ntokens = sum(s['ntokens'] for s in sample)
            src_size = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, ntokens)
            bsz_meter.update(src_size)
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
            clip_meter.update(1 if grad_norm > args.clip_norm else 0)
            gnorm_meter.update(grad_norm)

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
                ('gnorm', '{:.4f}'.format(gnorm_meter.avg)),
            ]))

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
                trainer.save_checkpoint(args, epoch, i + 1)

        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}% | gnorm {:.4f}'
        t.write(fmt.format(loss_meter.avg, math.pow(2, loss_meter.avg),
                           round(wps_meter.elapsed_time),
                           round(wps_meter.avg),
                           round(wpb_meter.avg),
                           round(bsz_meter.avg),
                           lr, clip_meter.avg * 100,
                           gnorm_meter.avg))


def validate(args, epoch, trainer, criterion, dataset, subset, ngpus):
    """Evaluate the model on the validation set and return the average loss."""

    itr = dataset.dataloader(subset, batch_size=None,
                             max_tokens=args.max_tokens,
                             max_positions=args.max_positions)
    loss_meter = AverageMeter()

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
            ntokens = sum(s['ntokens'] for s in sample)
            loss = trainer.valid_step(sample, criterion)
            loss_meter.update(loss, ntokens)
            t.set_postfix(loss='{:.2f}'.format(loss_meter.avg))

        val_loss = loss_meter.avg
        t.write(desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'
                .format(val_loss, math.pow(2, val_loss)))

    # update and return the learning rate
    return val_loss


def score_test(args, model, dataset, subset, beam, cuda_device):
    """Evaluate the model on the test set and return the BLEU scorer."""

    translator = SequenceGenerator([model], dataset.dst_dict, beam_size=beam)
    if torch.cuda.is_available():
        translator.cuda()

    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
    itr = dataset.dataloader(subset, batch_size=4, max_positions=args.max_positions)
    for _, _, ref, hypos in translator.generate_batched_itr(itr, cuda_device=cuda_device):
        scorer.add(ref.int().cpu(), hypos[0]['tokens'].int().cpu())
    return scorer


if __name__ == '__main__':
    main()