test_average_checkpoints.py 4.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import collections
import os
import tempfile
import unittest
12
import shutil
Myle Ott's avatar
Myle Ott committed
13
14
15

import numpy as np
import torch
16
17
18
from torch import nn


Myle Ott's avatar
Myle Ott committed
19
20
21
22

from scripts.average_checkpoints import average_checkpoints


23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class ModelWithSharedParameter(nn.Module):
    def __init__(self):
        super(ModelWithSharedParameter, self).__init__()
        self.embedding = nn.Embedding(1000, 200)
        self.FC1 = nn.Linear(200, 200)
        self.FC2 = nn.Linear(200, 200)
        # tie weight in FC2 to FC1
        self.FC2.weight = nn.Parameter(self.FC1.weight)
        self.FC2.bias = nn.Parameter(self.FC1.bias)

        self.relu = nn.ReLU()

    def forward(self, input):
        return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input)


Myle Ott's avatar
Myle Ott committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class TestAverageCheckpoints(unittest.TestCase):
    def test_average_checkpoints(self):
        params_0 = collections.OrderedDict(
            [
                ('a', torch.DoubleTensor([100.0])),
                ('b', torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])),
                ('c', torch.IntTensor([7, 8, 9])),
            ]
        )
        params_1 = collections.OrderedDict(
            [
                ('a', torch.DoubleTensor([1.0])),
                ('b', torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])),
                ('c', torch.IntTensor([2, 2, 2])),
            ]
        )
        params_avg = collections.OrderedDict(
            [
                ('a', torch.DoubleTensor([50.5])),
                ('b', torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])),
                # We expect truncation for integer division
                ('c', torch.IntTensor([4, 5, 5])),
            ]
        )

        fd_0, path_0 = tempfile.mkstemp()
        fd_1, path_1 = tempfile.mkstemp()
        torch.save(collections.OrderedDict([('model', params_0)]), path_0)
        torch.save(collections.OrderedDict([('model', params_1)]), path_1)

        output = average_checkpoints([path_0, path_1])['model']

        os.close(fd_0)
        os.remove(path_0)
        os.close(fd_1)
        os.remove(path_1)

        for (k_expected, v_expected), (k_out, v_out) in zip(
                params_avg.items(), output.items()):
            self.assertEqual(
                k_expected, k_out, 'Key mismatch - expected {} but found {}. '
                '(Expected list of keys: {} vs actual list of keys: {})'.format(
                    k_expected, k_out, params_avg.keys(), output.keys()
                )
            )
            np.testing.assert_allclose(
                v_expected.numpy(),
                v_out.numpy(),
                err_msg='Tensor value mismatch for key {}'.format(k_expected)
            )

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def test_average_checkpoints_with_shared_parameters(self):

        def _construct_model_with_shared_parameters(path, value):
            m = ModelWithSharedParameter()
            nn.init.constant_(m.FC1.weight, value)
            torch.save(
                {'model': m.state_dict()},
                path
            )
            return m

        tmpdir = tempfile.mkdtemp()
        paths = []
        path = os.path.join(tmpdir, "m1.pt")
        m1 = _construct_model_with_shared_parameters(path, 1.0)
        paths.append(path)

        path = os.path.join(tmpdir, "m2.pt")
        m2 = _construct_model_with_shared_parameters(path, 2.0)
        paths.append(path)

        path = os.path.join(tmpdir, "m3.pt")
        m3 = _construct_model_with_shared_parameters(path, 3.0)
        paths.append(path)

        new_model = average_checkpoints(paths)
        self.assertTrue(
            torch.equal(
                new_model['model']['embedding.weight'],
                (m1.embedding.weight +
                 m2.embedding.weight +
                 m3.embedding.weight) / 3.0
            )
        )

        self.assertTrue(
            torch.equal(
                new_model['model']['FC1.weight'],
                (m1.FC1.weight +
                 m2.FC1.weight +
                 m3.FC1.weight) / 3.0
            )
        )

        self.assertTrue(
            torch.equal(
                new_model['model']['FC2.weight'],
                (m1.FC2.weight +
                 m2.FC2.weight +
                 m3.FC2.weight) / 3.0
            )
        )
        shutil.rmtree(tmpdir)

Myle Ott's avatar
Myle Ott committed
144
145
146

if __name__ == '__main__':
    unittest.main()