"vscode:/vscode.git/clone" did not exist on "72b0917daadc3189bac12a2cc8bdc83f58321a04"
eval_lm.py 6.73 KB
Newer Older
alexeib's avatar
alexeib committed
1
2
3
4
5
6
7
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8

Myle Ott's avatar
Myle Ott committed
9
10
11
"""
Evaluate the perplexity of a trained language model.
"""
alexeib's avatar
alexeib committed
12
13
14
15

import numpy as np
import torch

Myle Ott's avatar
Myle Ott committed
16
from fairseq import options, progress_bar, tasks, utils
alexeib's avatar
alexeib committed
17
18
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.sequence_scorer import SequenceScorer
19
from fairseq.utils import import_user_module
alexeib's avatar
alexeib committed
20
21


Alexei Baevski's avatar
Alexei Baevski committed
22
23
24
25
26
class WordStat(object):
    def __init__(self, word, is_bpe):
        self.word = word
        self.is_bpe = is_bpe
        self.log_prob = 0
Myle Ott's avatar
Myle Ott committed
27
        self.next_word_prob = 0
Alexei Baevski's avatar
Alexei Baevski committed
28
        self.count = 0
Myle Ott's avatar
Myle Ott committed
29
30
31
32
33
34
35
36
37
38
39
        self.missing_next_words = 0

    def add(self, log_prob, next_word_prob):
        """ increments counters for the sum of log probs of current word and next
            word (given context ending at current word). Since the next word might be at the end of the example,
            or it might be not counted because it is not an ending subword unit,
            also keeps track of how many of those we have seen """
        if next_word_prob is not None:
            self.next_word_prob += next_word_prob
        else:
            self.missing_next_words += 1
Alexei Baevski's avatar
Alexei Baevski committed
40
41
42
43
        self.log_prob += log_prob
        self.count += 1

    def __str__(self):
Myle Ott's avatar
Myle Ott committed
44
45
        return '{}\t{}\t{}\t{}\t{}\t{}'.format(self.word, self.count, self.log_prob, self.is_bpe,
                                               self.next_word_prob, self.count - self.missing_next_words)
Alexei Baevski's avatar
Alexei Baevski committed
46
47


alexeib's avatar
alexeib committed
48
49
def main(parsed_args):
    assert parsed_args.path is not None, '--path required for evaluation!'
alexeib's avatar
alexeib committed
50

51
52
    import_user_module(parsed_args)

alexeib's avatar
alexeib committed
53
54
55
56
57
58
59
60
    print(parsed_args)

    use_cuda = torch.cuda.is_available() and not parsed_args.cpu

    task = tasks.setup_task(parsed_args)

    # Load ensemble
    print('| loading model(s) from {}'.format(parsed_args.path))
Myle Ott's avatar
Myle Ott committed
61
62
63
    models, args = utils.load_ensemble_for_inference(
        parsed_args.path.split(':'), task, model_arg_overrides=eval(parsed_args.model_overrides),
    )
alexeib's avatar
alexeib committed
64

alexeib's avatar
alexeib committed
65
66
67
68
    for arg in vars(parsed_args).keys():
        if arg not in {'self_target', 'future_target', 'past_target', 'tokens_per_sample', 'output_size_dictionary'}:
            setattr(args, arg, getattr(parsed_args, arg))
    task = tasks.setup_task(args)
Myle Ott's avatar
Myle Ott committed
69
70
71
72

    # Load dataset splits
    task.load_dataset(args.gen_subset)
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))
alexeib's avatar
alexeib committed
73
74
75
76

    # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer)
    for model in models:
        model.make_generation_fast_()
Myle Ott's avatar
Myle Ott committed
77
78
        if args.fp16:
            model.half()
alexeib's avatar
alexeib committed
79

alexeib's avatar
alexeib committed
80
81
    assert len(models) > 0

Myle Ott's avatar
Myle Ott committed
82
83
    print('num. model params: {}'.format(sum(p.numel() for p in models[0].parameters())))

84
    itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
85
        dataset=task.dataset(args.gen_subset),
Alexei Baevski's avatar
Alexei Baevski committed
86
87
        max_tokens=args.max_tokens or 36000,
        max_sentences=args.max_sentences,
88
89
90
        max_positions=utils.resolve_max_positions(*[
            model.max_positions() for model in models
        ]),
Myle Ott's avatar
Myle Ott committed
91
        ignore_invalid_inputs=True,
Myle Ott's avatar
Myle Ott committed
92
93
        num_shards=args.num_shards,
        shard_id=args.shard_id,
Myle Ott's avatar
Myle Ott committed
94
        num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
95
    ).next_epoch_itr(shuffle=False)
alexeib's avatar
alexeib committed
96
97

    gen_timer = StopwatchMeter()
Myle Ott's avatar
Myle Ott committed
98
    scorer = SequenceScorer(models, task.target_dictionary)
alexeib's avatar
alexeib committed
99
100
101
102
103
    if use_cuda:
        scorer.cuda()

    score_sum = 0.
    count = 0
Alexei Baevski's avatar
Alexei Baevski committed
104
105
106
107

    if args.remove_bpe is not None:
        bpe_cont = args.remove_bpe.rstrip()
        bpe_toks = set(i for i in range(len(task.dictionary)) if task.dictionary[i].endswith(bpe_cont))
108
        bpe_len = len(bpe_cont)
Alexei Baevski's avatar
Alexei Baevski committed
109
110
    else:
        bpe_toks = None
111
        bpe_len = 0
Alexei Baevski's avatar
Alexei Baevski committed
112

Alexei Baevski's avatar
Alexei Baevski committed
113
114
    word_stats = dict()

alexeib's avatar
alexeib committed
115
116
117
118
119
120
    with progress_bar.build_progress_bar(args, itr) as t:
        results = scorer.score_batched_itr(t, cuda=use_cuda, timer=gen_timer)
        wps_meter = TimeMeter()
        for _, src_tokens, __, hypos in results:
            for hypo in hypos:
                pos_scores = hypo['positional_scores']
Alexei Baevski's avatar
Alexei Baevski committed
121
122
123
124
125
126
127
128
129

                skipped_toks = 0
                if bpe_toks is not None:
                    for i in range(len(hypo['tokens']) - 1):
                        if hypo['tokens'][i].item() in bpe_toks:
                            skipped_toks += 1
                            pos_scores[i + 1] += pos_scores[i]
                            pos_scores[i] = 0

alexeib's avatar
alexeib committed
130
131
132
                inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf'))
                if inf_scores.any():
                    print('| Skipping tokens with inf scores:',
Myle Ott's avatar
Myle Ott committed
133
                          task.target_dictionary.string(hypo['tokens'][inf_scores.nonzero()]))
alexeib's avatar
alexeib committed
134
                    pos_scores = pos_scores[(~inf_scores).nonzero()]
Myle Ott's avatar
Myle Ott committed
135
                score_sum += pos_scores.sum().cpu()
Alexei Baevski's avatar
Alexei Baevski committed
136
                count += pos_scores.numel() - skipped_toks
137

Alexei Baevski's avatar
Alexei Baevski committed
138
                if args.output_word_probs or args.output_word_stats:
139
140
                    w = ''
                    word_prob = []
Alexei Baevski's avatar
Alexei Baevski committed
141
                    is_bpe = False
142
143
144
145
146
                    for i in range(len(hypo['tokens'])):
                        w_ind = hypo['tokens'][i].item()
                        w += task.dictionary[w_ind]
                        if bpe_toks is not None and w_ind in bpe_toks:
                            w = w[:-bpe_len]
Alexei Baevski's avatar
Alexei Baevski committed
147
                            is_bpe = True
148
149
                        else:
                            word_prob.append((w, pos_scores[i].item()))
Myle Ott's avatar
Myle Ott committed
150
151
152
153
154
155
156
157
158
159

                            next_prob = None
                            ind = i + 1
                            while ind < len(hypo['tokens']):
                                if pos_scores[ind].item() != 0:
                                    next_prob = pos_scores[ind]
                                    break
                                ind += 1

                            word_stats.setdefault(w, WordStat(w, is_bpe)).add(pos_scores[i].item(), next_prob)
Alexei Baevski's avatar
Alexei Baevski committed
160
                            is_bpe = False
161
                            w = ''
Alexei Baevski's avatar
Alexei Baevski committed
162
163
                    if args.output_word_probs:
                        print('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob))
164

alexeib's avatar
alexeib committed
165
166
167
168
169
170
171
            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})

    avg_nll_loss = -score_sum / count
    print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss)))

Alexei Baevski's avatar
Alexei Baevski committed
172
173
174
175
    if args.output_word_stats:
        for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True):
            print(ws)

alexeib's avatar
alexeib committed
176
177
178

if __name__ == '__main__':
    parser = options.get_eval_lm_parser()
179
    args = options.parse_args_and_arch(parser)
alexeib's avatar
alexeib committed
180
    main(args)