"tools/release_notes/retrieve_prs.py" did not exist on "f2dff4d4f6d44f3f399a3ab031b43ae4e3ef7ab9"
test_sequence_generator.py 9.27 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import argparse
import unittest

import torch
from torch.autograd import Variable

from fairseq.sequence_generator import SequenceGenerator

import tests.utils as test_utils


class TestSequenceGenerator(unittest.TestCase):

    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = Variable(torch.LongTensor([
            [self.w1, self.w2, self.eos],
            [self.w1, self.w2, self.eos],
        ]))
        self.src_lengths = Variable(torch.LongTensor([2, 2]))

        args = argparse.Namespace()
        unk = 0.
        args.beam_probs = [
            # step 0:
            torch.FloatTensor([
                # eos      w1   w2
                # sentence 1:
                [0.0, unk, 0.9, 0.1],  # beam 1
                [0.0, unk, 0.9, 0.1],  # beam 2
                # sentence 2:
                [0.0, unk, 0.7, 0.3],
                [0.0, unk, 0.7, 0.3],
            ]),
            # step 1:
            torch.FloatTensor([
                # eos      w1   w2       prefix
                # sentence 1:
                [1.0, unk, 0.0, 0.0],  # w1: 0.9  (emit: w1 <eos>: 0.9*1.0)
                [0.0, unk, 0.9, 0.1],  # w2: 0.1
                # sentence 2:
                [0.25, unk, 0.35, 0.4],  # w1: 0.7  (don't emit: w1 <eos>: 0.7*0.25)
                [0.00, unk, 0.10, 0.9],  # w2: 0.3
            ]),
            # step 2:
            torch.FloatTensor([
                # eos      w1   w2       prefix
                # sentence 1:
                [0.0, unk, 0.1, 0.9],  # w2 w1: 0.1*0.9
                [0.6, unk, 0.2, 0.2],  # w2 w2: 0.1*0.1  (emit: w2 w2 <eos>: 0.1*0.1*0.6)
                # sentence 2:
                [0.60, unk, 0.4, 0.00],  # w1 w2: 0.7*0.4  (emit: w1 w2 <eos>: 0.7*0.4*0.6)
                [0.01, unk, 0.0, 0.99],  # w2 w2: 0.3*0.9
            ]),
            # step 3:
            torch.FloatTensor([
                # eos      w1   w2       prefix
                # sentence 1:
                [1.0, unk, 0.0, 0.0],  # w2 w1 w2: 0.1*0.9*0.9  (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
                [1.0, unk, 0.0, 0.0],  # w2 w1 w1: 0.1*0.9*0.1  (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
                # sentence 2:
                [0.1, unk, 0.5, 0.4],  # w2 w2 w2: 0.3*0.9*0.99  (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
                [1.0, unk, 0.0, 0.0],  # w1 w2 w1: 0.7*0.4*0.4  (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
            ]),
        ]

Myle Ott's avatar
Myle Ott committed
83
84
85
        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary
Myle Ott's avatar
Myle Ott committed
86
87

    def test_with_normalization(self):
Myle Ott's avatar
Myle Ott committed
88
        generator = SequenceGenerator([self.model], self.tgt_dict)
Myle Ott's avatar
Myle Ott committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])

    def test_without_normalization(self):
        # Sentence 1: unchanged from the normalized case
        # Sentence 2: beams swap order
Myle Ott's avatar
Myle Ott committed
107
        generator = SequenceGenerator([self.model], self.tgt_dict, normalize_scores=False)
Myle Ott's avatar
Myle Ott committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)

    def test_with_lenpen_favoring_short_hypos(self):
        lenpen = 0.6
Myle Ott's avatar
Myle Ott committed
125
        generator = SequenceGenerator([self.model], self.tgt_dict, len_penalty=lenpen)
Myle Ott's avatar
Myle Ott committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)

    def test_with_lenpen_favoring_long_hypos(self):
        lenpen = 5.0
Myle Ott's avatar
Myle Ott committed
143
        generator = SequenceGenerator([self.model], self.tgt_dict, len_penalty=lenpen)
Myle Ott's avatar
Myle Ott committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)

    def test_maxlen(self):
Myle Ott's avatar
Myle Ott committed
160
        generator = SequenceGenerator([self.model], self.tgt_dict, maxlen=2)
Myle Ott's avatar
Myle Ott committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])

    def test_no_stop_early(self):
Myle Ott's avatar
Myle Ott committed
177
        generator = SequenceGenerator([self.model], self.tgt_dict, stop_early=False)
Myle Ott's avatar
Myle Ott committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w2, w2, w2, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.3, 0.9, 0.99, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0])

    def assertHypoTokens(self, hypo, tokens):
        self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens))

    def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertAlmostEqual(hypo['positional_scores'], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo['tokens'].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel()**lenpen
        self.assertLess(abs(score - hypo['score']), 1e-6)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


if __name__ == '__main__':
    unittest.main()