rerank_tune.py 2.81 KB
Newer Older
Nathan Ng's avatar
Nathan Ng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import rerank
import argparse
import numpy as np
import random
from examples.noisychannel import rerank_options
from fairseq import options


def random_search(args):
    param_values = []
    tuneable_parameters = ['lenpen', 'weight1', 'weight2', 'weight3']
    initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3]
    for i, elem in enumerate(initial_params):
        if type(elem) is not list:
            initial_params[i] = [elem]
        else:
            initial_params[i] = elem

    tune_parameters = args.tune_param.copy()
    for i in range(len(args.tune_param)):
        assert args.upper_bound[i] >= args.lower_bound[i]
        index = tuneable_parameters.index(args.tune_param[i])
        del tuneable_parameters[index]
        del initial_params[index]

    tune_parameters += tuneable_parameters
    param_values += initial_params
    random.seed(args.seed)

Myle Ott's avatar
Myle Ott committed
30
31
32
33
34
35
36
37
    random_params = np.array([
        [random.uniform(args.lower_bound[i], args.upper_bound[i]) for i in range(len(args.tune_param))]
        for k in range(args.num_trials)
    ])
    set_params = np.array([
        [initial_params[i][0] for i in range(len(tuneable_parameters))]
        for k in range(args.num_trials)
    ])
Nathan Ng's avatar
Nathan Ng committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    random_params = np.concatenate((random_params, set_params), 1)

    rerank_args = vars(args).copy()
    if args.nbest_list:
        rerank_args['gen_subset'] = 'test'
    else:
        rerank_args['gen_subset'] = args.tune_subset

    for k in range(len(tune_parameters)):
        rerank_args[tune_parameters[k]] = list(random_params[:, k])

    if args.share_weights:
        k = tune_parameters.index('weight2')
        rerank_args['weight3'] = list(random_params[:, k])

    rerank_args = argparse.Namespace(**rerank_args)
    best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank(rerank_args)
    rerank_args = vars(args).copy()
    rerank_args['lenpen'] = [best_lenpen]
    rerank_args['weight1'] = [best_weight1]
    rerank_args['weight2'] = [best_weight2]
    rerank_args['weight3'] = [best_weight3]

    # write the hypothesis from the valid set from the best trial

    if args.gen_subset != "valid":
        rerank_args['gen_subset'] = "valid"
        rerank_args = argparse.Namespace(**rerank_args)
        rerank.rerank(rerank_args)

    # test with the best hyperparameters on gen subset
    rerank_args = vars(args).copy()
    rerank_args['gen_subset'] = args.gen_subset
    rerank_args['lenpen'] = [best_lenpen]
    rerank_args['weight1'] = [best_weight1]
    rerank_args['weight2'] = [best_weight2]
    rerank_args['weight3'] = [best_weight3]
    rerank_args = argparse.Namespace(**rerank_args)
    rerank.rerank(rerank_args)


def cli_main():
    parser = rerank_options.get_tuning_parser()
    args = options.parse_args_and_arch(parser)

    random_search(args)


if __name__ == '__main__':
    cli_main()