singleprocess_train.py 10.3 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import collections
import itertools
import os
import math
import torch

from fairseq import criterions, data, models, options, progress_bar
from fairseq.meters import AverageMeter, StopwatchMeter
from fairseq.trainer import Trainer


def main(args):
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(
            args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(
            args.data, splits, args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    # Build model and criterion
    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    # Initialize dataloader
    train_dataloader = dataset.train_dataloader_generator(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(
            min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
            min(args.max_target_positions, trainer.get_model().max_decoder_positions())
        ),
        seed=args.seed,
        sample_without_replacement=args.sample_without_replacement,
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )

Myle Ott's avatar
Myle Ott committed
73
74
75
    # Load the latest checkpoint if one is available
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
76
77
78
79
80
81
    epoch = 1
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            epoch = extra_state['epoch']
            print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
Myle Ott's avatar
Myle Ott committed
82
            trainer.lr_step(epoch)
83
84
            for i in range(epoch):
                _ = next(train_dataloader)
Myle Ott's avatar
Myle Ott committed
85
86
87
88
            epoch += 1

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
Myle Ott's avatar
Myle Ott committed
89
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
90
91
92
93
94
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
95
        train(args, trainer, next(train_dataloader), epoch)
Myle Ott's avatar
Myle Ott committed
96
97

        # evaluate on validate set
98
        first_val_loss = None
Myle Ott's avatar
Myle Ott committed
99
100
101
102
        if epoch % args.validate_interval == 0:
            for k, subset in enumerate(args.valid_subset.split(',')):
                val_loss = validate(args, trainer, dataset, subset, epoch)
                if k == 0:
103
                    first_val_loss = val_loss
Myle Ott's avatar
Myle Ott committed
104

105
106
107
108
109
110
        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch, first_val_loss)

        # save checkpoint
        if not args.no_save and epoch % args.save_interval == 0:
            save_checkpoint(trainer, args, epoch, first_val_loss)
Myle Ott's avatar
Myle Ott committed
111
112

        epoch += 1
Myle Ott's avatar
Myle Ott committed
113
114
115

        if trainer.get_num_updates() >= max_update:
            break
Myle Ott's avatar
Myle Ott committed
116
117
118
119
120
    train_meter.stop()

    print('| done training in {:.1f} seconds'.format(train_meter.sum))


121
def train(args, trainer, itr, epoch):
Myle Ott's avatar
Myle Ott committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
136
    max_update = args.max_update or math.inf
137
138
139
140
    num_batches = len(itr)
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    for i, sample in enumerate(progress):
        if i < num_batches - 1 and (i + 1) % args.update_freq > 0:
Sergey Edunov's avatar
Sergey Edunov committed
141
142
143
144
145
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)
Myle Ott's avatar
Myle Ott committed
146
147
148
149
150
151

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss']:
                continue  # these are already logged above
Myle Ott's avatar
Myle Ott committed
152
153
154
155
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
Myle Ott's avatar
Myle Ott committed
156
157
158
            stats[k] = extra_meters[k].avg
        progress.log(stats)

Sergey Edunov's avatar
Sergey Edunov committed
159
        # ignore the first mini-batch in words-per-second calculation
160
        if i == 0:
Myle Ott's avatar
Myle Ott committed
161
            trainer.get_meter('wps').reset()
Myle Ott's avatar
Myle Ott committed
162

163
        if trainer.get_num_updates() >= max_update:
Myle Ott's avatar
Myle Ott committed
164
165
            break

Myle Ott's avatar
Myle Ott committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
190
    stats['oom'] = trainer.get_meter('oom').avg
Myle Ott's avatar
Myle Ott committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    return stats


def validate(args, trainer, dataset, subset, epoch):
    """Evaluate the model on the validation set and return the average loss."""

    # Initialize dataloader
    max_positions_valid = (
        trainer.get_model().max_encoder_positions(),
        trainer.get_model().max_decoder_positions(),
    )
    itr = dataset.eval_dataloader(
        subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions_valid,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(
        args, itr, epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple'
    )

    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for sample in progress:
        log_output = trainer.valid_step(sample)

        # log mid-validation stats
        stats = get_valid_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss']:
                continue
            extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

    # log validation stats
    stats = get_valid_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

    return stats['valid_loss']


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
    else:
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


265
def save_checkpoint(trainer, args, epoch, val_loss=None):
Myle Ott's avatar
Myle Ott committed
266
267
268
269
270
    extra_state = {
        'epoch': epoch,
        'val_loss': val_loss,
    }

271
272
    if not args.no_epoch_checkpoints:
        epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
Myle Ott's avatar
Myle Ott committed
273
274
        trainer.save_checkpoint(epoch_filename, extra_state)

275
276
277
278
279
280
    assert val_loss is not None
    if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
        save_checkpoint.best = val_loss
        best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
        trainer.save_checkpoint(best_filename, extra_state)

Myle Ott's avatar
Myle Ott committed
281
282
283
284
285
286
287
288
    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


if __name__ == '__main__':
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
    main(args)