rerank_options.py 7.37 KB
Newer Older
Nathan Ng's avatar
Nathan Ng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

from fairseq import options


def get_reranking_parser(default_task='translation'):
    parser = options.get_parser('Generation and reranking', default_task)
    add_reranking_args(parser)
    return parser


def get_tuning_parser(default_task='translation'):
    parser = options.get_parser('Reranking tuning', default_task)
    add_reranking_args(parser)
    add_tuning_args(parser)
    return parser


def add_reranking_args(parser):
    group = parser.add_argument_group("Reranking")
    # fmt: off
    group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True,
                       help='path to first model or ensemble of models for rescoring')
    group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False,
                       help='path to second model or ensemble of models for rescoring')
    group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10,
                       help='the number of candidate hypothesis to rescore')
    group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128,
                       help='batch size for generating the nbest list')
    group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'],
                       help='data subset to generate (train, valid, test)')
    group.add_argument('--gen-model', default=None, metavar='FILE',
                       help='the model to generate translations')
    group.add_argument('-b1', '--backwards1', action='store_true',
                       help='whether or not the first model group is backwards')
    group.add_argument('-b2', '--backwards2', action='store_true',
                       help='whether or not the second model group is backwards')
    group.add_argument('-a', '--weight1', default=1, nargs='+', type=float,
                       help='the weight(s) of the first model')
    group.add_argument('-b', '--weight2', default=1, nargs='+', type=float,
                       help='the weight(s) of the second model, or the gen model if using nbest from interactive.py')
    group.add_argument('-c', '--weight3', default=1, nargs='+', type=float,
                       help='the weight(s) of the third model')

    # lm arguments
    group.add_argument('-lm', '--language-model', default=None, metavar='FILE',
                       help='language model for target language to rescore translations')
    group.add_argument('--lm-dict', default=None, metavar='FILE',
                       help='the dict of the language model for the target language')
    group.add_argument('--lm-name', default=None,
                       help='the name of the language model for the target language')
    group.add_argument('--lm-bpe-code', default=None, metavar='FILE',
                       help='the bpe code for the language model for the target language')
    group.add_argument('--data-dir-name', default=None,
                       help='name of data directory')
    group.add_argument('--lenpen', default=1, nargs='+', type=float,
                       help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
    group.add_argument('--score-dict-dir', default=None,
                       help='the directory with dictionaries for the scoring models')
    group.add_argument('--right-to-left1', action='store_true',
                       help='whether the first model group is a right to left model')
    group.add_argument('--right-to-left2', action='store_true',
                       help='whether the second model group is a right to left model')
    group.add_argument('--remove-bpe', default='@@ ',
                       help='the bpe symbol, used for the bitext and LM')
    group.add_argument('--prefix-len', default=None, type=int,
                       help='the length of the target prefix to use in rescoring (in terms of words wo bpe)')
    group.add_argument('--sampling', action='store_true',
                       help='use sampling instead of beam search for generating n best list')
    group.add_argument('--diff-bpe', action='store_true',
                       help='bpe for rescoring and nbest list not the same')
    group.add_argument('--rescore-bpe-code', default=None,
                       help='bpe code for rescoring models')
    group.add_argument('--nbest-list', default=None,
                       help='use predefined nbest list in interactive.py format')
    group.add_argument('--write-hypos', default=None,
                       help='filename prefix to write hypos to')
    group.add_argument('--ref-translation', default=None,
                       help='reference translation to use with nbest list from interactive.py')
    group.add_argument('--backwards-score-dict-dir', default=None,
                       help='the directory with dictionaries for the backwards model,'
                            'if None then it is assumed the fw and backwards models share dictionaries')

    # extra scaling args
    group.add_argument('--gen-model-name', default=None,
                       help='the name of the models that generated the nbest list')
    group.add_argument('--model1-name', default=None,
                       help='the name of the set for model1 group ')
    group.add_argument('--model2-name', default=None,
                       help='the name of the set for model2 group')
    group.add_argument('--shard-id', default=0, type=int,
                       help='the id of the shard to generate')
    group.add_argument('--num-shards', default=1, type=int,
                       help='the number of shards to generate across')
    group.add_argument('--all-shards', action='store_true',
                       help='use all shards')
    group.add_argument('--target-prefix-frac', default=None, type=float,
                       help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)')
    group.add_argument('--source-prefix-frac', default=None, type=float,
                       help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)')
    group.add_argument('--normalize', action='store_true',
                       help='whether to normalize by src and target len')

    return group


def add_tuning_args(parser):
    group = parser.add_argument_group("Tuning")

    group.add_argument('--lower-bound', default=[-0.7], nargs='+', type=float,
                       help='lower bound of search space')
    group.add_argument('--upper-bound', default=[3], nargs='+', type=float,
                       help='upper bound of search space')
    group.add_argument('--tune-param', default=['lenpen'], nargs='+',
                       choices=['lenpen', 'weight1', 'weight2', 'weight3'],
                       help='the parameter(s) to tune')
    group.add_argument('--tune-subset', default='valid', choices=['valid', 'test', 'train'],
                       help='the subset to tune on ')
    group.add_argument('--num-trials', default=1000, type=int,
                       help='number of trials to do for random search')
    group.add_argument('--share-weights', action='store_true',
                       help='share weight2 and weight 3')
    return group