1. 23 Feb, 2021 1 commit
    • Myle Ott's avatar
      Add FullyShardedDataParallel (FSDP) (#413) · 15512d9e
      Myle Ott authored
      Recent work by [Microsoft](https://arxiv.org/abs/1910.02054) and [Google](https://arxiv.org/abs/2004.13336
      
      ) has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the new **`FullyShardedDataParallel` (FSDP)** wrapper, which is a drop-in replacement for PyTorch's `DistributedDataParallel` (DDP) wrapper.
      
      Compared to PyTorch DDP:
      * FSDP shards parameters (FP16 + FP32) and optimizer state across data parallel GPUs
      * FSDP with `reshard_after_forward=False` has the same communication cost as PyTorch DDP and is similar to ZeRO-2
      * FSDP with `reshard_after_forward=True` increases total communication by 50% and is similar to ZeRO-3:
          * all-gather parameters at start of forward pass and start of backward pass
          * reduce-scatter grads at end of backward pass
      Co-authored-by: default avatarMin Xu <24926999+min-xu-ai@users.noreply.github.com>
      Co-authored-by: default avatarSam Shleifer <sshleifer@gmail.com>
      15512d9e
  2. 03 Sep, 2020 1 commit
    • Jun Ru Anderson's avatar
      Add grad scaler (#48) · b6a5e634
      Jun Ru Anderson authored
      
      
      Add GradScaler to Fairscale, subclassing PyTorch's GradScaler. Use GradScaler in the pipe benchmark; though it is not needed in this case, it is a good example of how to use gradient scaling for larger models that do require gradient scaling in order to converge.
      Co-authored-by: default avatarJun Ru Anderson <andersonic@fb.com>
      b6a5e634
  3. 08 Jul, 2020 1 commit