Unverified Commit cd186441 authored by anj-s's avatar anj-s Committed by GitHub
Browse files

[refactor] Refactor and enable multiprocess nn.Pipe benchmarks. (#319)



* mp cleanup

* round of multiprocess refactoring

* test golden run

* print cuda stats

* fix lint errors

* enable multiprocess pipe benchmarks

* set world size to be available gpus

* more changes

* use synthetic loaders for intermediate pipeline stages

* merged master

* fix for the devices property

* dataloader fix

* modify rank check

* print wps stats

* enable verification

* fix logging

* fix flag name

* fix flag name

* check for rank

* fix indent

* pass args

* pass args

* modify golden data

* remove unused print messsage

* fix lint errors

* add comments

* fix benchmarks
Co-authored-by: default avatarAnjali Sridhar <anj@devfair0443.h2.fair>
parent a2408eb8
...@@ -168,6 +168,12 @@ run_pipe_benchmark: &run_pipe_benchmark ...@@ -168,6 +168,12 @@ run_pipe_benchmark: &run_pipe_benchmark
command: | command: |
python benchmarks/pipe.py python benchmarks/pipe.py
run_mp_pipe_benchmark: &run_mp_pipe_benchmark
- run:
name: Run Multiprocess Pipe Benchmark
command: |
python benchmarks/pipe.py --multiprocess
run_oss_benchmark: &run_oss_benchmark run_oss_benchmark: &run_oss_benchmark
- run: - run:
name: Run OSS Benchmark name: Run OSS Benchmark
...@@ -444,6 +450,8 @@ jobs: ...@@ -444,6 +450,8 @@ jobs:
- <<: *run_pipe_benchmark - <<: *run_pipe_benchmark
- <<: *run_mp_pipe_benchmark
- <<: *run_oss_benchmark - <<: *run_oss_benchmark
- <<: *run_oss_gloo - <<: *run_oss_gloo
......
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import io import io
import tempfile
import torch import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
...@@ -28,7 +29,8 @@ def get_real_dataloaders(args, benchmark_config): ...@@ -28,7 +29,8 @@ def get_real_dataloaders(args, benchmark_config):
"""Return real dataloaders for training, testing and validation.""" """Return real dataloaders for training, testing and validation."""
url = "https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip" url = "https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip"
test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url, root="/tmp")) tmpdir = tempfile.TemporaryDirectory()
test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url, root=tmpdir.name))
tokenizer = get_tokenizer("basic_english") tokenizer = get_tokenizer("basic_english")
def data_process(raw_text_iter): def data_process(raw_text_iter):
......
...@@ -20,17 +20,24 @@ def get_benchmark_config(): ...@@ -20,17 +20,24 @@ def get_benchmark_config():
"scaler": GradScaler(), "scaler": GradScaler(),
"clip_value": 0.05, "clip_value": 0.05,
"batch_size": 8, "batch_size": 8,
"num_decoder_layers": 10,
"seq_len": 32, "seq_len": 32,
} }
def get_golden_real_stats(): def get_golden_real_stats(multiprocess=False):
if not multiprocess:
return { return {
"avg_wps": 703.778, "avg_wps": 703.778,
"std_dev_wps": 5.732, "std_dev_wps": 5.732,
"peak_mem_usage": [2320996352, 1396742144, 1396742144, 2340010496], "peak_mem_usage": [2320996352, 1396742144, 1396742144, 2340010496],
} }
else:
return {
"avg_wps": 647.404,
"std_dev_wps": 14.51,
"peak_mem_usage": [3305007616, 2578692608, 3304524288, 2578692608],
}
def get_golden_synthetic_stats(): def get_golden_synthetic_stats():
......
...@@ -7,7 +7,6 @@ import gc ...@@ -7,7 +7,6 @@ import gc
import logging import logging
import math import math
import operator import operator
import os
import pprint import pprint
import time import time
...@@ -17,6 +16,7 @@ from golden_configs import lm_wikitext2 ...@@ -17,6 +16,7 @@ from golden_configs import lm_wikitext2
from models import transformer_lm from models import transformer_lm
import numpy as np import numpy as np
import torch import torch
import torch.distributed as dist
from torch.distributed import rpc from torch.distributed import rpc
import torch.multiprocessing as mp import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP
...@@ -29,6 +29,9 @@ from fairscale.nn.pipe import LazyModule, MultiProcessPipe ...@@ -29,6 +29,9 @@ from fairscale.nn.pipe import LazyModule, MultiProcessPipe
from fairscale.optim.oss import OSS from fairscale.optim.oss import OSS
from fairscale.utils.testing import dist_init, get_worker_map from fairscale.utils.testing import dist_init, get_worker_map
MPI_PORT = 29500
RPC_PORT = 29501
def init_random_seed(seed: int): def init_random_seed(seed: int):
...@@ -64,7 +67,7 @@ def get_lm_model(args, device, config): ...@@ -64,7 +67,7 @@ def get_lm_model(args, device, config):
dropout = config["dropout"] dropout = config["dropout"]
vocab_size = config["vocab_size"] vocab_size = config["vocab_size"]
nhid = config["nhid"] nhid = config["nhid"]
ndecoder = args.num_decoder_layers ndecoder = config["num_decoder_layers"]
if args.lazy_construction: if args.lazy_construction:
layers = [ layers = [
...@@ -179,13 +182,13 @@ def get_device(model, index): ...@@ -179,13 +182,13 @@ def get_device(model, index):
if not torch.cuda.is_available(): if not torch.cuda.is_available():
return torch.device("cpu") return torch.device("cpu")
if model.devices: if hasattr(model, "devices"):
return model.devices[index] return model.devices[index]
else: else:
return torch.cuda.current_device() return torch.cuda.current_device()
def get_fake_dataloader(lm_dataloader_len): def get_fake_dataloader(lm_dataloader_len, args):
fake_input = {"input": torch.zeros(args.batch_size)} fake_input = {"input": torch.zeros(args.batch_size)}
class FakeDataset: class FakeDataset:
...@@ -224,7 +227,7 @@ def train(model_config, model, benchmark_config, args): ...@@ -224,7 +227,7 @@ def train(model_config, model, benchmark_config, args):
# TODO(anj-s): Avoid sending fake data to all replicas except the first and last one. # TODO(anj-s): Avoid sending fake data to all replicas except the first and last one.
if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1): if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1):
lm_dataloader = get_fake_dataloader(len(lm_dataloader)) lm_dataloader, _, _ = get_synthetic_dataloaders(args, benchmark_config)
total_tokens = 0 total_tokens = 0
total_tokens_per_log_interval = 0 total_tokens_per_log_interval = 0
...@@ -288,11 +291,12 @@ def train(model_config, model, benchmark_config, args): ...@@ -288,11 +291,12 @@ def train(model_config, model, benchmark_config, args):
if i % log_interval == 0 and i > 0: if i % log_interval == 0 and i > 0:
cur_loss = total_loss / log_interval cur_loss = total_loss / log_interval
elapsed = time.time() - start_time elapsed = time.time() - start_time
print( if not args.multiprocess or dist.get_rank() == dist.get_world_size() - 1:
"| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format( print(
i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss) "| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format(
i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss)
)
) )
)
total_tokens_per_log_interval = 0 total_tokens_per_log_interval = 0
total_loss = 0 total_loss = 0
start_time = time.time() start_time = time.time()
...@@ -303,8 +307,10 @@ def train(model_config, model, benchmark_config, args): ...@@ -303,8 +307,10 @@ def train(model_config, model, benchmark_config, args):
raise RuntimeError( raise RuntimeError(
"Unable to benchmark on a single batch. Increase the size " " of the dataset and rerun the benchmark." "Unable to benchmark on a single batch. Increase the size " " of the dataset and rerun the benchmark."
) )
if not args.multiprocess or dist.get_rank() == dist.get_world_size() - 1:
return wps, loss.item() return wps, loss.item()
else:
return 0.0, 0.0
# TODO(anj-s): Add an option for users to be able to benchmark evaluate. # TODO(anj-s): Add an option for users to be able to benchmark evaluate.
...@@ -334,52 +340,64 @@ def get_number_of_words(data): ...@@ -334,52 +340,64 @@ def get_number_of_words(data):
return data.size()[0] * data.size()[1] return data.size()[0] * data.size()[1]
def verify_lm_run(wps, golden_config): def verify_peak_memory(rank, golden_config, std_dev):
"""Verify that words per second for a given benchmark run matches the golden data.""" print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]))
current_device_usage = torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]
# Assert that words per second is within 3 standard deviations of the average golden_ref = golden_config["peak_mem_usage"][rank]
# of five golden runs if not current_device_usage < golden_ref * std_dev:
print("Throughput(wps) is {:.2f}.".format(wps))
if not wps > (golden_config["avg_wps"] - (3 * golden_config["std_dev_wps"])):
raise RuntimeError( raise RuntimeError(
"Throughput(wps):{:.2f} is below the golden threshold of an " "Peak memory usage for cuda device {:d} is {:d} which"
"average value of {:.2f} and standard dev of {:.2f}.".format( "is less than golden reference value of {:d}".format(rank, current_device_usage, golden_ref)
wps, golden_config["avg_wps"], golden_config["std_dev_wps"]
)
) )
for i in range(4):
print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(i)["allocated_bytes.all.peak"]))
# Assert that memory usage on each GPU is within 10% of golden run def verify_lm_run(wps, golden_config, args):
# Right-hand-side is golden run bytes * 110% """Verify that words per second for a given benchmark run matches the golden data."""
for i, golden_ref in zip(range(4), golden_config["peak_mem_usage"]):
current_device_usage = torch.cuda.memory_stats(i)["allocated_bytes.all.peak"] # Verify wps only on the last rank in multiprocess pipe
if not current_device_usage < golden_ref * 1.1: if not args.multiprocess or dist.get_rank() == dist.get_world_size() - 1:
# Assert that words per second is within 3 standard deviations of the average
# of five golden runs
print("Throughput(wps) is {:.2f}.".format(wps))
if not wps > (golden_config["avg_wps"] - (3 * golden_config["std_dev_wps"])):
raise RuntimeError( raise RuntimeError(
"Peak memory usage for cuda device {:d} is {:d} which" "Throughput(wps):{:.2f} is below the golden threshold of an "
"is less than golden reference value of {:d}".format(i, current_device_usage, golden_ref) "average value of {:.2f} and standard dev of {:.2f}.".format(
wps, golden_config["avg_wps"], golden_config["std_dev_wps"]
)
) )
if args.multiprocess:
verify_peak_memory(dist.get_rank(), golden_config, 1.5)
else:
for i in range(4):
verify_peak_memory(i, golden_config, 1.1)
def benchmark_language_model(model_config, model, benchmark_config, args): def benchmark_language_model(model_config, model, benchmark_config, args):
golden_config = get_golden_config(args.model_name) golden_config = get_golden_config(args.model_name, args)
epoch = benchmark_config["epochs"] epoch = benchmark_config["epochs"]
print("-" * 110)
print("| start of epoch {:1d}".format(epoch))
print("-" * 110)
start_time = time.time() start_time = time.time()
if dist.get_rank() == dist.get_world_size() - 1:
print("-" * 110)
print("| start of epoch {:1d}".format(epoch))
print("-" * 110)
wps, loss = train(model_config, model, benchmark_config, args) wps, loss = train(model_config, model, benchmark_config, args)
elapsed_time = time.time() - start_time elapsed_time = time.time() - start_time
print("-" * 110) if dist.get_rank() == dist.get_world_size() - 1:
print("| end of epoch {:1d} | time: {:5.2f}s | train loss {:5.2f} ".format(epoch, elapsed_time, loss)) print("-" * 110)
print("-" * 110) print("| end of epoch {:1d} | time: {:5.2f}s | train loss {:5.2f} ".format(epoch, elapsed_time, loss))
print("-" * 110)
print("Throughput(wps) is {:.2f}.".format(wps))
print(
"Peak allocated bytes on cuda:{}: {:1d}".format(
dist.get_rank(), torch.cuda.memory_stats(dist.get_rank())["allocated_bytes.all.peak"]
)
)
print("wps ", wps)
if len(model.balance) == 4: if len(model.balance) == 4:
if args.model_name == "lm": if args.model_name == "lm":
verify_lm_run(wps, golden_config) verify_lm_run(wps, golden_config, args)
else: else:
raise RuntimeError("Unrecognized args.model_name " % args.model_name) raise RuntimeError("Unrecognized args.model_name " % args.model_name)
...@@ -458,11 +476,11 @@ def create_benchmark_config(model_name): ...@@ -458,11 +476,11 @@ def create_benchmark_config(model_name):
raise RuntimeError("Unrecognized args.model_mame " % args.model_name) raise RuntimeError("Unrecognized args.model_mame " % args.model_name)
def get_golden_config(model_name): def get_golden_config(model_name, args):
"""Return a dict with the golden data for throughput and memory usage.""" """Return a dict with the golden data for throughput and memory usage."""
if model_name == "lm": if model_name == "lm":
return lm_wikitext2.get_golden_real_stats() return lm_wikitext2.get_golden_real_stats(args.multiprocess)
else: else:
raise RuntimeError("Unrecognized args.model_mame " % args.model_name) raise RuntimeError("Unrecognized args.model_mame " % args.model_name)
...@@ -470,6 +488,9 @@ def get_golden_config(model_name): ...@@ -470,6 +488,9 @@ def get_golden_config(model_name):
def benchmark_single_process(args): def benchmark_single_process(args):
"""Benchmark a given model using a single process and multiple devices.""" """Benchmark a given model using a single process and multiple devices."""
init_method_pgroup = "tcp://localhost:{}".format(MPI_PORT)
torch.distributed.init_process_group(backend="gloo", rank=0, world_size=1, init_method=init_method_pgroup)
num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1 num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1
assert num_devices > 0 assert num_devices > 0
init_random_seed(0) init_random_seed(0)
...@@ -492,10 +513,10 @@ def benchmark_single_process(args): ...@@ -492,10 +513,10 @@ def benchmark_single_process(args):
def run_mp_worker(args, available_workers): def run_mp_worker(args, available_workers):
benchmark_config = create_benchmark_config(args.model_name) benchmark_config = create_benchmark_config(args.model_name)
model_config = create_model_config(args, config=benchmark_config) model_config = create_model_config(args, benchmark_config=benchmark_config)
model = model_config["model"] model = model_config["model"]
balance = generate_balance_weighted(get_pipeline_parallel_group().size(), len(model), 0.8) balance = generate_balance(get_pipeline_parallel_group().size(), len(model))
pipe_model = MultiProcessPipe( pipe_model = MultiProcessPipe(
model, model,
balance, balance,
...@@ -512,7 +533,7 @@ def run_mp_worker(args, available_workers): ...@@ -512,7 +533,7 @@ def run_mp_worker(args, available_workers):
print(f"running all at once") print(f"running all at once")
pipe_model.pipeline.all_at_once = True pipe_model.pipeline.all_at_once = True
if args.use_synthetic_data: if args.dry_run:
train(model_config, pipe_model, benchmark_config, args) train(model_config, pipe_model, benchmark_config, args)
else: else:
benchmark_language_model(model_config, pipe_model, benchmark_config, args) benchmark_language_model(model_config, pipe_model, benchmark_config, args)
...@@ -530,63 +551,27 @@ def run_worker(rank, world_size, args): ...@@ -530,63 +551,27 @@ def run_worker(rank, world_size, args):
torch.distributed.destroy_process_group() torch.distributed.destroy_process_group()
def bench_multi_process(args, all_at_once=False): def benchmark_multiprocess(rank, world_size, args):
if args.local_world_size != 0:
world_size = args.local_world_size init_method_pgroup = "tcp://localhost:{}".format(MPI_PORT)
else: # TODO(anj-s): Add regression benchmarks for nccl as well.
world_size = min(torch.cuda.device_count(), 2) torch.distributed.init_process_group(
mp.spawn(run_worker, args=(world_size, args), nprocs=world_size, join=True) backend="gloo", rank=rank, world_size=world_size, init_method=init_method_pgroup
)
best_device_map = {
0: "mlx5_0:1",
1: "mlx5_0:1",
2: "mlx5_1:1",
3: "mlx5_1:1",
4: "mlx5_2:1",
5: "mlx5_2:1",
6: "mlx5_3:1",
7: "mlx5_3:1",
}
def bench_mpi(args):
guess_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
os.environ["UCX_NET_DEVICES"] = best_device_map[local_rank]
os.environ["MASTER_ADDR"] = args.host
os.environ["MASTER_PORT"] = "10638"
if args.socket_name:
os.environ["GLOO_SOCKET_IFNAME"] = args.socket_name
os.environ["TP_SOCKET_IFNAME"] = args.socket_name
torch.distributed.init_process_group(backend="gloo", rank=guess_rank, world_size=world_size)
os.environ["MASTER_ADDR"] = args.host
os.environ["MASTER_PORT"] = "10639"
init_method = f"tcp://{os.environ['MASTER_ADDR']}:{os.environ['MASTER_PORT']}"
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(local_rank % torch.cuda.device_count())
torch.cuda.set_device(rank % torch.cuda.device_count())
# TODO(anj-s): Move to TensorPipeRpcBackendOptions.
rpc.init_rpc( rpc.init_rpc(
f"Test{rank}", f"Test{rank}",
rank=rank, rank=rank,
world_size=world_size, world_size=world_size,
backend=rpc.BackendType.PROCESS_GROUP, backend=rpc.BackendType.PROCESS_GROUP,
rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(rpc_timeout=20, init_method=init_method), rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(
rpc_timeout=20, init_method="tcp://localhost:{}".format(RPC_PORT)
),
) )
initialize_model_parallel(1, world_size)
backends = {"model_parallel_backend": "nccl", "pipeline_backend": "mpi", "ddp_backend": "nccl"}
if args.ddp_zero:
initialize_model_parallel(1, 4, **backends)
else:
initialize_model_parallel(1, world_size, **backends)
init_random_seed(0) init_random_seed(0)
run_mp_worker(args, world_size) run_mp_worker(args, world_size)
rpc.shutdown() rpc.shutdown()
...@@ -594,17 +579,12 @@ def bench_mpi(args): ...@@ -594,17 +579,12 @@ def bench_mpi(args):
parser = argparse.ArgumentParser(description="benchmark") parser = argparse.ArgumentParser(description="benchmark")
parser.add_argument("--local-world-size", "-l", type=int, default=0, help="local world size") parser.add_argument("--multiprocess", action="store_true", help="Runs single process benchmarks.")
parser.add_argument("--world-size", "-w", type=int, default=0, help="world size")
parser.add_argument("--rank-base", "-r", type=int, help="rank base", default=0)
parser.add_argument("--host", "-o", type=str, default="localhost", help="hostname") parser.add_argument("--host", "-o", type=str, default="localhost", help="hostname")
parser.add_argument("--no-mpi", action="store_true", default=False, help="disable mpi")
parser.add_argument("--chunks", type=int, default=1, help="number of microbatches per batch") parser.add_argument("--chunks", type=int, default=1, help="number of microbatches per batch")
parser.add_argument("--batch-size", type=int, default=8, help="size of a batch") parser.add_argument("--batch-size", type=int, default=8, help="size of a batch")
parser.add_argument("--all-at-once", action="store_true", default=False, help="do backward pass on whole batch at once") parser.add_argument("--all-at-once", action="store_true", default=False, help="do backward pass on whole batch at once")
parser.add_argument("--max-batch", type=int, default=4, help="Max number of batches") parser.add_argument("--max-batch", type=int, default=4, help="Max number of batches")
parser.add_argument("--socket-name", type=str, default=None, help="socket ifname for gloo/tp")
parser.add_argument("--num-decoder-layers", type=int, default=10, help="Number of decoder layers in the model")
parser.add_argument("--ddp-zero", action="store_true", default=False, help="enable ddp") parser.add_argument("--ddp-zero", action="store_true", default=False, help="enable ddp")
parser.add_argument( parser.add_argument(
"--lazy-construction", action="store_true", default=False, help="Number of decoder layers in the model" "--lazy-construction", action="store_true", default=False, help="Number of decoder layers in the model"
...@@ -612,12 +592,7 @@ parser.add_argument( ...@@ -612,12 +592,7 @@ parser.add_argument(
parser.add_argument( parser.add_argument(
"--checkpoint", default="never", choices=["always", "except_last", "never"], help="Checkpointing strategy for pipe" "--checkpoint", default="never", choices=["always", "except_last", "never"], help="Checkpointing strategy for pipe"
) )
parser.add_argument( parser.add_argument("--pipelined-backward", action="store_true", help="Pipelined backward pass")
"--pipelined-backward", dest="pipelined_backward", action="store_true", help="Pipelined backward pass"
)
parser.add_argument(
"--no-pipelined-backward", dest="pipelined_backward", action="store_false", help="Pipelined backward pass"
)
parser.add_argument("--use_synthetic_data", action="store_true", help="Uses synthetic data for running benchmarks.") parser.add_argument("--use_synthetic_data", action="store_true", help="Uses synthetic data for running benchmarks.")
parser.add_argument("--dry_run", action="store_true", help="Run a sample training run without regression testing.") parser.add_argument("--dry_run", action="store_true", help="Run a sample training run without regression testing.")
parser.add_argument( parser.add_argument(
...@@ -626,15 +601,16 @@ parser.add_argument( ...@@ -626,15 +601,16 @@ parser.add_argument(
default="lm", default="lm",
help="Language Model(LM) used to benchmark nn.pipe.", help="Language Model(LM) used to benchmark nn.pipe.",
) )
parser.set_defaults(pipelined_backward=True)
if __name__ == "__main__": if __name__ == "__main__":
args = parser.parse_args() args = parser.parse_args()
# TODO(anj-s): Add support for multiprocess benchmarking.
if args.no_mpi or "OMPI_COMM_WORLD_RANK" not in os.environ: # TODO(anj-s): Remove print statements and introduce logging levels.
print(f"Running benchmark with args: {args}")
if not args.multiprocess:
print(f"Running single process benchmark with args: {args}")
benchmark_single_process(args) benchmark_single_process(args)
else: else:
if os.environ["OMPI_COMM_WORLD_RANK"] == "0": world_size = max(torch.cuda.device_count(), 1)
print(f"Running benchmark with args: {args}") print(f"Running multiprocess benchmark with args: {args}")
bench_mpi(args) mp.spawn(benchmark_multiprocess, args=(world_size, args), nprocs=world_size, join=True)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment