Unverified Commit 8f8f8ef9 authored by Min Xu's avatar Min Xu Committed by GitHub
Browse files

[chore] move fair_dev into fairscale (#1078)


Co-authored-by: default avatarMin Xu <min.xu.public@gmail.com>
parent bfd57ff3
...@@ -21,8 +21,8 @@ from torch.utils.data import DataLoader ...@@ -21,8 +21,8 @@ from torch.utils.data import DataLoader
import torchtext import torchtext
from torchtext.data.utils import get_tokenizer from torchtext.data.utils import get_tokenizer
from fair_dev.testing.testing import dist_init, get_worker_map
from fairscale.experimental.nn.ampnet_pipe import pipe from fairscale.experimental.nn.ampnet_pipe import pipe
from fairscale.fair_dev.testing.testing import dist_init, get_worker_map
from fairscale.nn.model_parallel import initialize_model_parallel from fairscale.nn.model_parallel import initialize_model_parallel
from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group
from fairscale.nn.pipe import LazyModule from fairscale.nn.pipe import LazyModule
......
...@@ -16,7 +16,7 @@ from torch.nn.parallel import DistributedDataParallel as DDP ...@@ -16,7 +16,7 @@ from torch.nn.parallel import DistributedDataParallel as DDP
import utils import utils
from benchmarks.golden_configs.lm_wikitext2 import Pipe as lm_wikitext2 from benchmarks.golden_configs.lm_wikitext2 import Pipe as lm_wikitext2
from fair_dev.testing.testing import dist_init from fairscale.fair_dev.testing.testing import dist_init
from fairscale.nn import Pipe from fairscale.nn import Pipe
from fairscale.nn.model_parallel import initialize_model_parallel from fairscale.nn.model_parallel import initialize_model_parallel
......
NOTE:
The experimental and fair_dev submodules are not part of the fairscale public
API. There can be breaking changes in them at anytime.
...@@ -5,6 +5,10 @@ ...@@ -5,6 +5,10 @@
################################################################################ ################################################################################
# Import most common subpackages # Import most common subpackages
#
# NOTE: we don't maintain any public APIs in both experimental and fair_dev
# sub-modules. Code in them are experimental or for developer only. They
# can be changed, removed, anytime.
################################################################################ ################################################################################
from typing import List from typing import List
......
...@@ -22,8 +22,8 @@ from torch import nn ...@@ -22,8 +22,8 @@ from torch import nn
from torch.optim.optimizer import Optimizer from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader, Dataset from torch.utils.data import DataLoader, Dataset
from fair_dev.testing.testing import get_worker_map, torch_spawn
from fairscale.experimental.nn.ampnet_pipe.pipe import AMPnetPipe from fairscale.experimental.nn.ampnet_pipe.pipe import AMPnetPipe
from fairscale.fair_dev.testing.testing import get_worker_map, torch_spawn
class MySGD(Optimizer): class MySGD(Optimizer):
......
...@@ -15,8 +15,8 @@ from torch import nn ...@@ -15,8 +15,8 @@ from torch import nn
import torch.distributed import torch.distributed
import torch.nn.functional as F import torch.nn.functional as F
from fair_dev.testing.testing import skip_if_single_gpu, spawn_for_all_world_sizes
import fairscale.experimental.nn.data_parallel.gossip as gossip import fairscale.experimental.nn.data_parallel.gossip as gossip
from fairscale.fair_dev.testing.testing import skip_if_single_gpu, spawn_for_all_world_sizes
# Enfore CUBLAS reproducibility, see https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility # Enfore CUBLAS reproducibility, see https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
......
...@@ -12,9 +12,9 @@ import os ...@@ -12,9 +12,9 @@ import os
import pytest import pytest
import torch import torch
from fair_dev.testing.testing import skip_if_no_cuda
from fairscale.experimental.nn import MEVO from fairscale.experimental.nn import MEVO
from fairscale.experimental.nn.mevo import BaselineSoftmaxNllLoss, get_data from fairscale.experimental.nn.mevo import BaselineSoftmaxNllLoss, get_data
from fairscale.fair_dev.testing.testing import skip_if_no_cuda
@pytest.fixture(scope="session", params=[torch.float16, torch.float32]) @pytest.fixture(scope="session", params=[torch.float16, torch.float32])
......
...@@ -20,8 +20,8 @@ import torch.distributed.rpc as rpc ...@@ -20,8 +20,8 @@ import torch.distributed.rpc as rpc
import torch.multiprocessing as mp import torch.multiprocessing as mp
import torch.nn as nn import torch.nn as nn
from fair_dev.testing.testing import skip_due_to_flakyness, skip_if_single_gpu
from fairscale.experimental.nn.distributed_pipeline import DistributedLoss, DistributedPipeline, PipelineModulesGraph from fairscale.experimental.nn.distributed_pipeline import DistributedLoss, DistributedPipeline, PipelineModulesGraph
from fairscale.fair_dev.testing.testing import skip_due_to_flakyness, skip_if_single_gpu
from fairscale.internal import torch_version from fairscale.internal import torch_version
pytestmark = pytest.mark.skipif( pytestmark = pytest.mark.skipif(
......
...@@ -14,8 +14,8 @@ import numpy as np ...@@ -14,8 +14,8 @@ import numpy as np
import pytest import pytest
import torch import torch
from fair_dev.testing.testing import skip_if_no_cuda
from fairscale.experimental.nn.offload import OffloadModel from fairscale.experimental.nn.offload import OffloadModel
from fairscale.fair_dev.testing.testing import skip_if_no_cuda
from fairscale.internal import torch_version from fairscale.internal import torch_version
if torch_version() >= (1, 8, 0): if torch_version() >= (1, 8, 0):
......
...@@ -10,12 +10,12 @@ import torch.multiprocessing as mp ...@@ -10,12 +10,12 @@ import torch.multiprocessing as mp
import torch.nn as nn import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel from torch.nn.parallel import DistributedDataParallel
from fair_dev.testing.testing import GPT2, dist_init, skip_if_no_cuda, skip_if_single_gpu, temp_files_ctx
from fairscale.experimental.tooling.layer_memory_tracker import ( from fairscale.experimental.tooling.layer_memory_tracker import (
LayerwiseMemoryTracker, LayerwiseMemoryTracker,
ProcessGroupTracker, ProcessGroupTracker,
find_best_reset_points, find_best_reset_points,
) )
from fairscale.fair_dev.testing.testing import GPT2, dist_init, skip_if_no_cuda, skip_if_single_gpu, temp_files_ctx
from fairscale.nn import FullyShardedDataParallel from fairscale.nn import FullyShardedDataParallel
......
...@@ -11,8 +11,8 @@ import pytest ...@@ -11,8 +11,8 @@ import pytest
import torch import torch
from torch import nn from torch import nn
from fair_dev.testing.testing import objects_are_equal
from fairscale.experimental.wgit.sha1_store import SHA1_Store from fairscale.experimental.wgit.sha1_store import SHA1_Store
from fairscale.fair_dev.testing.testing import objects_are_equal
# Get the absolute path of the parent at the beginning before any os.chdir(), # Get the absolute path of the parent at the beginning before any os.chdir(),
# so that we can proper clean it up at any CWD. # so that we can proper clean it up at any CWD.
......
...@@ -6,8 +6,8 @@ ...@@ -6,8 +6,8 @@
import pytest import pytest
import torch import torch
from fair_dev.testing.testing import objects_are_equal
from fairscale.experimental.wgit.signal_sparsity import SignalSparsity, random_sparse_mask from fairscale.experimental.wgit.signal_sparsity import SignalSparsity, random_sparse_mask
from fairscale.fair_dev.testing.testing import objects_are_equal
# Our own tolerance # Our own tolerance
ATOL = 1e-6 ATOL = 1e-6
......
...@@ -8,8 +8,8 @@ import time ...@@ -8,8 +8,8 @@ import time
import pytest import pytest
import torch import torch
from fair_dev.testing.testing import objects_are_equal, skip_if_no_cuda
from fairscale.experimental.wgit.signal_sparsity_profiling import EnergyConcentrationProfile as ECP from fairscale.experimental.wgit.signal_sparsity_profiling import EnergyConcentrationProfile as ECP
from fairscale.fair_dev.testing.testing import objects_are_equal, skip_if_no_cuda
# Our own tolerance # Our own tolerance
ATOL = 1e-6 ATOL = 1e-6
......
...@@ -10,7 +10,7 @@ import torch ...@@ -10,7 +10,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint_wrapper from torch.utils.checkpoint import checkpoint as torch_checkpoint_wrapper
from fair_dev.testing.testing import skip_if_no_cuda from fairscale.fair_dev.testing.testing import skip_if_no_cuda
from fairscale.internal import torch_version from fairscale.internal import torch_version
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper, disable_checkpointing from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper, disable_checkpointing
from fairscale.nn.misc import FlattenParamsWrapper from fairscale.nn.misc import FlattenParamsWrapper
......
...@@ -14,7 +14,7 @@ import torch ...@@ -14,7 +14,7 @@ import torch
from torch.nn import BatchNorm2d, LayerNorm, Linear, Sequential from torch.nn import BatchNorm2d, LayerNorm, Linear, Sequential
from torch.optim import SGD from torch.optim import SGD
from fair_dev.testing.testing import objects_are_equal from fairscale.fair_dev.testing.testing import objects_are_equal
from fairscale.internal import torch_version from fairscale.internal import torch_version
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
......
...@@ -18,7 +18,7 @@ import torch ...@@ -18,7 +18,7 @@ import torch
from torch import nn from torch import nn
import torch.distributed import torch.distributed
from fair_dev.testing.testing import ( from fairscale.fair_dev.testing.testing import (
DeviceAndTypeCheckModule, DeviceAndTypeCheckModule,
DummyProcessGroup, DummyProcessGroup,
dist_init, dist_init,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment