Unverified Commit 2350968e authored by Crutcher Dunnavant's avatar Crutcher Dunnavant Committed by GitHub
Browse files

Move f/utils => f/internal; move testing libs to fair_dev/testing (#1004)

parent 3b727945
......@@ -24,9 +24,9 @@ import torch
import torch.nn.init as init
from torch.nn.parameter import Parameter
from fair_dev.testing.testing import dist_init, set_random_seed, spawn_for_all_world_sizes
from fairscale.nn.model_parallel import initialize as mpu
from fairscale.nn.model_parallel import layers
from fairscale.utils.testing import dist_init, set_random_seed, spawn_for_all_world_sizes
def run_test_parallel_embedding(rank, model_parallel_size, filename, filename_rpc):
......
......@@ -21,10 +21,10 @@
import torch
from fair_dev.testing.testing import dist_init, spawn_for_all_world_sizes
from fairscale.nn.model_parallel import initialize as mpu
from fairscale.nn.model_parallel import random
from fairscale.nn.model_parallel.random import get_cuda_rng_tracker, model_parallel_cuda_manual_seed
from fairscale.utils.testing import dist_init, spawn_for_all_world_sizes
def run_test_set_cuda_rng_state(rank, model_parallel_size, filename, filename_rpc):
......
......@@ -11,9 +11,9 @@ import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from fair_dev.testing.testing import make_cudnn_deterministic
from fairscale.internal import torch_version
from fairscale.nn import MOELayer, Top2Gate
from fairscale.utils import torch_version
from fairscale.utils.testing import make_cudnn_deterministic
pytestmark = pytest.mark.skipif(
not (torch.cuda.is_available() and torch_version() >= (1, 8, 0)), reason="cuda and torch>=1.8.0 required"
......
......@@ -21,10 +21,10 @@ import pytest
import torch
from torch import nn
from fair_dev.testing.testing import skip_if_single_gpu
from fairscale.nn.pipe import Pipe
from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.portal import PortalBlue, PortalCopy, PortalOrange
from fairscale.utils.testing import skip_if_single_gpu
@skip_if_single_gpu
......
......@@ -22,8 +22,8 @@ import torch
from torch import nn
import torch.nn.functional as F
from fair_dev.testing.testing import skip_if_single_gpu
from fairscale.nn.pipe import Pipe
from fairscale.utils.testing import skip_if_single_gpu
def test_python_autograd_function():
......
......@@ -20,9 +20,9 @@ from torch.nn import Linear, Sequential
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from fair_dev.testing.testing import skip_if_no_cuda, skip_if_single_gpu
from fairscale.nn.pipe.checkpoint import Checkpointing, Function, TensorOrTensors
from fairscale.nn.pipe.microbatch import Batch
from fairscale.utils.testing import skip_if_no_cuda, skip_if_single_gpu
# This test is mainly for checking pytorch & checkpointing behavior. pipe's checkpointing
# code is tested already in another file. Therefore, we can run this test less frequently.
......
......@@ -14,8 +14,8 @@ import numpy as np
import pytest
import torch
from fair_dev.testing.testing import skip_if_single_gpu
from fairscale.nn import Pipe
from fairscale.utils.testing import skip_if_single_gpu
def _get_model(num_inputs=2, num_hidden=20, num_outputs=2):
......
......@@ -22,8 +22,8 @@ import torch
from torch import nn
import torch.nn.functional as F
from fair_dev.testing.testing import get_worker_map, torch_spawn
from fairscale.nn.pipe import AsyncPipe
from fairscale.utils.testing import get_worker_map, torch_spawn
@torch_spawn([2])
......
......@@ -21,8 +21,8 @@ import pytest
import torch
from torch import nn
from fair_dev.testing.testing import get_worker_map, torch_spawn
from fairscale.nn.pipe import AsyncPipe
from fairscale.utils.testing import get_worker_map, torch_spawn
@torch_spawn([2])
......
......@@ -26,11 +26,11 @@ import pytest
import torch
from torch import nn
from fair_dev.testing.testing import get_worker_map, torch_spawn
from fairscale.internal import torch_version
from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group
from fairscale.nn.pipe import AsyncPipe
from fairscale.nn.pipe.types import LazyModule
from fairscale.utils import torch_version
from fairscale.utils.testing import get_worker_map, torch_spawn
@torch_spawn([2])
......
......@@ -6,10 +6,10 @@ import torch
from torch import nn
from torch.distributed import rpc
from fair_dev.testing.testing import get_worker_map, torch_spawn
from fairscale.internal import torch_version
from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group
from fairscale.nn.pipe import PipeRPCWrapper
from fairscale.utils import torch_version
from fairscale.utils.testing import get_worker_map, torch_spawn
def init_rpc():
......
......@@ -21,8 +21,8 @@ import pytest
import torch
from torch import nn
from fair_dev.testing.testing import get_worker_map, set_random_seed, torch_spawn
from fairscale.nn.pipe import AsyncPipe
from fairscale.utils.testing import get_worker_map, set_random_seed, torch_spawn
@torch_spawn([2])
......
......@@ -12,9 +12,9 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from fair_dev.testing.testing import DummyProcessGroup
from fairscale.nn import FullyShardedDataParallel as FSDP
from fairscale.nn import auto_wrap, default_auto_wrap_policy, enable_wrap, wrap
from fairscale.utils.testing import DummyProcessGroup
try:
from torch.cuda.amp import autocast
......
......@@ -33,11 +33,11 @@ from torch.nn import Linear
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD
from fair_dev.testing.golden_testing_data import adascale_test_data
from fair_dev.testing.testing import skip_if_single_gpu
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
from fairscale.nn.data_parallel import ShardedDataParallel as SDP
from fairscale.optim import OSS, AdaScale
from fairscale.utils.golden_testing_data import adascale_test_data
from fairscale.utils.testing import skip_if_single_gpu
def _dist_init(rank, world_size, tempfile_name, backend):
......
......@@ -18,8 +18,8 @@ import torchvision
import torchvision.transforms as transforms
from fair_dev.common_paths import DATASET_CACHE_ROOT
from fair_dev.testing.testing import skip_a_test_if_in_CI
from fairscale.optim.layerwise_gradient_scaler import LayerwiseGradientScaler
from fairscale.utils.testing import skip_a_test_if_in_CI
# Test: feed forward network
......
......@@ -21,15 +21,15 @@ import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import fairscale.optim as optim
from fairscale.utils import torch_version
from fairscale.utils.testing import (
from fair_dev.testing.testing import (
check_same_model_params,
check_same_models_across_ranks,
skip_if_no_cuda,
skip_if_py39_no_cuda,
skip_if_single_gpu,
)
from fairscale.internal import torch_version
import fairscale.optim as optim
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
......
......@@ -22,9 +22,9 @@ from torch.nn import Linear, Sequential
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD
from fair_dev.testing.golden_testing_data import adascale_test_data
from fair_dev.testing.testing import skip_if_single_gpu
from fairscale.optim import OSS, AdaScale, AdaScaleWrapper
from fairscale.utils.golden_testing_data import adascale_test_data
from fairscale.utils.testing import skip_if_single_gpu
def _dist_init(rank, world_size, tempfile_name, backend):
......
......@@ -19,10 +19,10 @@ from torch.nn import Linear, Sequential
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR
from fair_dev.testing.golden_testing_data import adascale_test_data
from fair_dev.testing.testing import make_cudnn_deterministic, skip_if_no_cuda
from fairscale.fair_dev.testing.testing_memory import find_tensor_by_shape
from fairscale.optim import AdaScale
from fairscale.utils.golden_testing_data import adascale_test_data
from fairscale.utils.testing import make_cudnn_deterministic, skip_if_no_cuda
from fairscale.utils.testing_memory import find_tensor_by_shape
def test_basic_cpu():
......
......@@ -16,7 +16,7 @@ import pytest
import torch
import torch.nn as nn
from fairscale.utils.containers import (
from fairscale.internal.containers import (
apply_to_tensors,
pack_kwargs,
split_non_tensors,
......
......@@ -12,7 +12,7 @@
from parameterized import parameterized
import torch
from fairscale.utils.parallel import chunk_and_pad
from fairscale.internal.parallel import chunk_and_pad
@parameterized.expand([[num_chunks] for num_chunks in range(1, 33)])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment