test_ddp_adascale.py 3.52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

""" Test AdaScale with DDP. """

import tempfile

import numpy as np
import pytest
import torch
from torch import Tensor
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import Linear
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD

from fairscale.optim import AdaScale
Min Xu's avatar
Min Xu committed
25
from fairscale.utils.golden_testing_data import adascale_test_data
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
26
from fairscale.utils.testing import skip_if_single_gpu
27
28
29
30
31
32
33
34


def _dist_init(rank, world_size, tempfile_name, backend):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)


35
def _test_basic_func(rank, world_size, tempfile_name, test_case):
36
37
38
39
40
41
    _dist_init(rank, world_size, tempfile_name, backend="nccl")  # Covers nccl

    model = Linear(2, 2, bias=False)
    model.to("cuda")
    model = DDP(model, device_ids=[rank])
    optim = AdaScale(SGD(model.parameters(), lr=0.1))
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    if "input" in test_case:
        # single iter
        in_data = Tensor(test_case["input"][rank])
        in_data = in_data.cuda()
        out = model(in_data)
        out.sum().backward()
        assert np.allclose(optim.gain(), test_case["expected_gain"]), optim.gain()
        optim.step()
        optim.zero_grad()
    else:
        # multiple iters
        for in_data in test_case["inputs"]:
            in_data = Tensor(in_data[rank]).cuda()
            out = model(in_data)
            out.sum().backward()
            optim.step()
            optim.zero_grad()
        assert np.allclose(optim.gain(), test_case["expected_gain"]), optim.gain()
60
61
62
63
64

    dist.destroy_process_group()


@skip_if_single_gpu
Min Xu's avatar
Min Xu committed
65
@pytest.mark.parametrize("test_case", adascale_test_data)
66
def test_basic(test_case):
67
68
69
70
    """Test adascale with DDP without gradient accumulation"""
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

71
    mp.spawn(_test_basic_func, args=(world_size, temp_file_name, test_case), nprocs=world_size, join=True)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


def _test_grad_accum_func(rank, world_size, tempfile_name):
    _dist_init(rank, world_size, tempfile_name, backend="gloo")  # Covers gloo

    model = Linear(4, 2, bias=False)
    model.to("cuda")
    model = DDP(model, device_ids=[rank])
    optim = AdaScale(SGD(model.parameters(), lr=0.1), num_gradients_to_accumulate=2)
    with model.no_sync():
        # iter 1, input vectors are pointing dim0 and dim1
        in_data = Tensor([0.0] * 4)
        in_data[rank] = 1.0
        in_data = in_data.cuda()
        out = model(in_data)
        out.sum().backward()
    # iter 2, input vectors are pointing dim2 and dim3
    in_data = Tensor([0.0] * 4)
    in_data[rank + 2] = 1.0
    in_data = in_data.cuda()
    out = model(in_data)
    out.sum().backward()
    # since all inputs are orthogonal, the gain should be exactly 4.0.
    assert np.allclose(optim.gain(), 4.0), optim.gain()
    optim.step()
    optim.zero_grad()

    dist.destroy_process_group()


@skip_if_single_gpu
def test_grad_accum():
    """Test adascale with DDP + gradient accumulation using ddp.no_sync()"""
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(_test_grad_accum_func, args=(world_size, temp_file_name), nprocs=world_size, join=True)