test_auto_shard.py 3.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Testing Auto Shard functionality of non nn.Sequential models.
"""

import math

import pytest
import torch
import torch.nn
import torch.nn as nn

17
from fairscale.utils import torch_version
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        self.d_model = d_model
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pe", pe)

    def forward(self, x):
        # TODO(anj): Fix the following error when using autoshard
        # Error: TypeError: slice indices must be integers or None or have an __index__ method
        # x = x + self.pe[:x.size(0), self.d_model]
        return self.dropout(x)


class TransformerModel(nn.Module):
    def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
        super(TransformerModel, self).__init__()
        self.pos_encoder = PositionalEncoding(ninp, dropout)
        encoder_layers = torch.nn.TransformerEncoderLayer(ninp, nhead, nhid, dropout)
        self.transformer_encoder = torch.nn.TransformerEncoder(encoder_layers, nlayers)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.ninp = ninp
        self.decoder = nn.Linear(ninp, ntoken)

        self.init_weights()

    def generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0))
        return mask

    def init_weights(self):
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, *args):
        src = args[0]
        src_mask = args[1]
        src = self.encoder(src) * math.sqrt(self.ninp)
        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, src_mask)
        output = self.decoder(output)
        return output


bptt = 35
ntokens = 28783  # the size of vocabulary
emsize = 200  # embedding dimension
nhid = 200  # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 1  # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 2  # the number of heads in the multiheadattention models
dropout = 0.2  # the dropout value


def test_single_run():
    if torch_version() < (1, 8, 0):
        pytest.skip("requires torch version >= 1.8.0")
    from fairscale.experimental.nn.auto_shard import shard_model

    model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout)
    sharded_model = shard_model(model)
    assert len(sharded_model) == 2, "Length is sharded model is incorrect."
    expected_param_nums = [5998600, 5785383]
    for i, model in enumerate(sharded_model):
        param_count = {}
        for name, module in model.named_modules():
            if "." in name:
                continue

            param_count[name] = sum([x.numel() for x in module.parameters()])
        assert expected_param_nums[i] == param_count[""]

    src_mask = torch.randn((35, 35), dtype=torch.float32)
    src = torch.randint(1, ntokens, (35, 20))
    input = [src, src_mask]
    for model in sharded_model:
        if type(input) == list:
            input = model(*input)
        else:
            input = model(input)

    assert input.size() == torch.Size([35, 20, 28783])