offload.py 15.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import contextlib
from functools import reduce
import logging
import math
import operator
import time

import numpy as np
import torch
from torch.optim import Adam
from torch.utils.data.dataloader import DataLoader
from torchvision.datasets import FakeData
from torchvision.transforms import ToTensor

from benchmarks.datasets.wikitext2_data import get_real_dataloaders as get_real_wikitext2_dataloaders
from benchmarks.datasets.wikitext2_data import get_synthetic_dataloaders as get_synthetic_wikitext2_dataloaders
from benchmarks.golden_configs.lm_wikitext2 import Offload_Sequential as offload_seq
from benchmarks.golden_configs.lm_wikitext2 import Offload_Transformer as lm_wikitext2
from benchmarks.models import transformer_lm
from fairscale.experimental.nn.offload import OffloadModel


def init_random_seed(seed: int):

    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)


def get_model_and_optimizer(args, device, benchmark_config, model_specs):
    """Return instantiated model and optimizer function."""

    if args.model_name == "lm":
        model = get_lm_model(args, device, model_specs)
        lr = benchmark_config["lr"]

        def make_adam(params):
            return Adam(params, lr=lr)

        optimizer = make_adam
    elif args.model_name == "seq":
        model = get_seq_model(args, device, model_specs)
        optimizer = torch.optim.SGD

    model = OffloadModel(
52
        model=model,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        device=torch.device("cuda"),
        offload_device=torch.device("cpu"),
        num_slices=benchmark_config["slices"],
        checkpoint_activation=benchmark_config["checkpoint_activation"],
        num_microbatches=benchmark_config["num_microbatches"],
    )

    return model, optimizer


def get_seq_model(args, device, model_specs):
    model = torch.nn.Sequential(
        torch.nn.Linear(model_specs["inputs"] * model_specs["inputs"], model_specs["hidden"]),
        *([torch.nn.Linear(model_specs["hidden"], model_specs["hidden"]) for _ in range(model_specs["layers"])]),
        torch.nn.Linear(model_specs["hidden"], model_specs["outputs"]),
    )
    return model.cpu()


def get_lm_model(args, device, config):
    """Get language model(based on GPT-2) used for sequence prediction."""

    ninp = config["ninp"]
    nhead = config["nhead"]
    initrange = config["initrange"]
    dropout = config["dropout"]
    vocab_size = config["vocab_size"]
    nhid = config["nhid"]
    ndecoder = config["num_decoder_layers"]

    return transformer_lm.TransformerLM(vocab_size, ninp, nhead, nhid, dropout, initrange, ndecoder).to(device)


def log_number_of_parameters(model):

    num_params = reduce(operator.add, (reduce(operator.mul, x.size()) for x in model.parameters()))
    logging.info(f"training model, #params = {num_params}")


def _get_fp16_context(use_fp16=False):
    if use_fp16:
        return torch.cuda.amp.autocast()
    else:
        return contextlib.nullcontext()


def _get_profiler_context(use_profiler=False):
    if use_profiler:
        return torch.autograd.profiler.profile(use_cuda=True, profile_memory=True)
    else:
        return contextlib.nullcontext()


def _get_profiler_record_context(record_name, use_profiler=False):
    if use_profiler:
        return torch.autograd.profiler.record_function(record_name)
    else:
        return contextlib.nullcontext()


def train_seq(model_config, benchmark_config, model_specs, args):
    device = torch.device("cuda")
    torch.cuda.set_device(0)
    torch.manual_seed(5)

    model = model_config["model"]
    criterion = benchmark_config["criterion"]
    optimizer = model_config["optimizer"](model.parameters(), lr=benchmark_config["lr"])
    dataloader, _, _ = model_config["data"]

    def train_epoch(args):
        model.train()
        for batch_inputs, batch_outputs in dataloader:
            batch_inputs, batch_outputs = batch_inputs.to("cuda"), batch_outputs.to("cuda")
            start = time.time_ns()
128
            with _get_profiler_context(args.use_profiler) as prof:
129
130
                optimizer.zero_grad()
                inputs = batch_inputs.reshape(-1, model_specs["inputs"] * model_specs["inputs"])
131
                with _get_profiler_record_context("model_training", args.use_profiler):
132
133
                    with _get_fp16_context(use_fp16=args.use_fp16):
                        output = model(inputs)
134
                        print(f"output grad_fn {output.grad_fn}")
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
                        loss = criterion(output, target=batch_outputs)
                        loss.backward()
                    optimizer.step()
            logging.info(
                "Memory stats are {:.2f}GB".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"] / 2 ** 30)
            )
            logging.info(
                "Loss {:.2f} - throughput {:.2f}fps".format(
                    loss.item(), benchmark_config["batch_size"] / (time.time_ns() - start) * 10 ** 9
                )
            )
        if args.use_profiler:
            prof.export_chrome_trace("/tmp/offload_prof")

    train_epoch(args)


def train(model_config, model, benchmark_config, model_specs, args):
153
154
155
    device = torch.device("cuda")
    torch.cuda.set_device(0)

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    lm_dataloader, _, _ = model_config["data"]
    criterion = benchmark_config["criterion"]
    vocab_size = model_specs["vocab_size"]
    optimizer = model_config["optimizer"]

    model.train()
    log_number_of_parameters(model)

    total_loss = 0.0
    word_counter = 0

    optimizer = optimizer(model.parameters())

    total_tokens = 0
    total_tokens_per_log_interval = 0
    bptt = 2
    start_time = time.time()
    epoch_start_time = 0.0

    def get_batch(source):
        seq_len = len(source) - 1
        data = source[0:seq_len]
        target = source[1 : 1 + seq_len]
        return data, target

    for i, batch in enumerate(lm_dataloader):
        if i == 1:
            epoch_start_time = time.time()

        source, target = get_batch(batch)
186
        source, target = source.cuda(), target.cuda()
187
188
189
190

        if i > 0:
            total_tokens += source.numel()

191
192
193
194
195
196
197
198
199
200
201
        with _get_profiler_context(args.use_profiler) as prof:
            optimizer.zero_grad()
            with _get_profiler_record_context("FW pass", args.use_profiler):
                output = model(source)
            with _get_profiler_record_context("Loss", args.use_profiler):
                loss = criterion(output.view(-1, vocab_size), target.view(-1))
            with _get_profiler_record_context("BW pass", args.use_profiler):
                loss.backward()
            torch.nn.utils.clip_grad_value_(model.parameters(), model_specs["clip_value"])
            with _get_profiler_record_context("Opt step", args.use_profiler):
                optimizer.step()
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

        total_loss += loss.item()
        log_interval = 1
        total_tokens_per_log_interval += source.numel()
        if i % log_interval == 0 and i > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
                "| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format(
                    i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss)
                )
            )
            total_tokens_per_log_interval = 0
            total_loss = 0
            start_time = time.time()
217
218
        if args.use_profiler:
            prof.export_chrome_trace("/tmp/offload_prof")
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    if epoch_start_time != 0:
        wps = total_tokens / (time.time() - epoch_start_time)
    else:
        raise RuntimeError(
            "Unable to benchmark on a single batch. Increase the size " " of the dataset and rerun the benchmark."
        )
    return wps, loss.item()


def verify_peak_memory(rank, golden_config, std_dev):
    print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]))
    current_device_usage = torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]
    golden_ref = golden_config["peak_mem_usage"][rank]
    if not current_device_usage < golden_ref * std_dev:
        raise RuntimeError(
            "Peak memory usage for cuda device {:d} is {:d} which"
            "is less than golden reference value of {:d}".format(rank, current_device_usage, golden_ref)
        )


def verify_lm_run(wps, golden_config, args):
    """Verify that words per second for a given benchmark run matches the golden data."""

    # Verify wps only on the last rank in multiprocess pipe
    if not args.multiprocess or dist.get_rank() == dist.get_world_size() - 1:
        # Assert that words per second is within 3 standard deviations of the average
        # of five golden runs
        print("Throughput(wps) is {:.2f}.".format(wps))
        if not wps > (golden_config["avg_wps"] - (3 * golden_config["std_dev_wps"])):
            raise RuntimeError(
                "Throughput(wps):{:.2f} is below the golden threshold of an "
                "average value of {:.2f} and standard dev of {:.2f}.".format(
                    wps, golden_config["avg_wps"], golden_config["std_dev_wps"]
                )
            )

    if args.multiprocess:
        verify_peak_memory(dist.get_rank(), golden_config, 1.5)
    else:
        for i in range(4):
            verify_peak_memory(i, golden_config, 1.1)


def benchmark_language_model(model_config, model, benchmark_config, model_specs, args):
    epoch = benchmark_config["epochs"]
    start_time = time.time()
    print("-" * 110)
    print("| start of epoch {:1d}".format(epoch))
    print("-" * 110)
    wps, loss = train(model_config, model, benchmark_config, model_specs, args)
    elapsed_time = time.time() - start_time
    print("-" * 110)
    print("| end of epoch {:1d} | time: {:5.2f}s | train loss {:5.2f} ".format(epoch, elapsed_time, loss))
    print("-" * 110)
    print("Throughput(wps) is {:.2f}.".format(wps))
    print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"]))
    # TODO(anj-s): Enable golden config data verification.


def get_synthetic_dataloaders(args, device, benchmark_config, model_specs):
    """Returns dataloader for synthetic data."""

    if args.model_name == "lm":
        return get_synthetic_wikitext2_dataloaders(args, benchmark_config, model_specs)
    elif args.model_name == "seq":
        transform = ToTensor()
        dataloader = DataLoader(
            FakeData(
                image_size=(1, model_specs["inputs"], model_specs["inputs"]),
                num_classes=model_specs["outputs"],
                transform=transform,
            ),
            batch_size=benchmark_config["batch_size"],
        )
        return dataloader, dataloader, dataloader
    else:
        raise RuntimeError(f"Unrecognized args.model_name {args.model_name}")


def get_real_dataloaders(args, device, benchmark_config, model_specs):
    """Returns dataloaders for real data."""

    if args.model_name == "lm":
        data = get_real_wikitext2_dataloaders(args, benchmark_config, model_specs)
        ntokens, train_dataloader, valid_dataloader, test_dataloader = data
        model_specs["vocab_size"] = ntokens
        return train_dataloader, valid_dataloader, test_dataloader
    else:
        raise RuntimeError(f"Unrecognized args.model_mame {args.model_name}")


def create_model_config(args, benchmark_config=None, model_specs=None):
    """Return a dict with the given model, dataset and optimizer."""

    # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    device = torch.device("cpu")

    if args.model_name == "lm":
        if args.use_synthetic_data:
            dataloader_fn = get_synthetic_dataloaders
        else:
            dataloader_fn = get_real_dataloaders

        data = dataloader_fn(args, device, benchmark_config, model_specs)
        model, optimizer = get_model_and_optimizer(args, device, benchmark_config, model_specs)
        return {
            "model": model,
            "optimizer": optimizer,
            "data": data,
        }
    elif args.model_name == "seq":

        data = get_synthetic_dataloaders(
            args, device, offload_seq.get_benchmark_config(), offload_seq.get_model_config()
        )
        model, optimizer = get_model_and_optimizer(args, device, benchmark_config, model_specs)
        return {
            "model": model,
            "optimizer": optimizer,
            "data": data,
        }
    else:
        raise RuntimeError(f"Unrecognized args.model_mame {args.model_name}")


def create_benchmark_config(model_name):
    """Return a dict with configurations required for benchmarking `model_name` model."""

    if args.model_name == "lm":
        return lm_wikitext2.get_benchmark_config()
    elif args.model_name == "seq":
        return offload_seq.get_benchmark_config()
    else:
        raise RuntimeError(f"Unrecognized args.model_name {args.model_name}")


def get_golden_config(model_name, args):
    """Return a dict with the golden data for throughput and memory usage."""

    if model_name == "lm":
        return lm_wikitext2.get_golden_real_stats(False)
    else:
        raise RuntimeError(f"Unrecognized args.model_mame {args.model_name}")


def get_model_specs(model_name):
    """Return a dict with configurations required for configuring `model_name` model."""

    if model_name == "lm":
        return lm_wikitext2.get_model_config()
    elif model_name == "seq":
        return offload_seq.get_model_config()
    else:
        raise RuntimeError("Unrecognized args.model_mame " % args.model_name)


def run_benchmark(args):
    """Benchmark a given model using a single process and single devices."""

    # We need at least 1 GPU to benchmark the offload model API.
    num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 0
    assert num_devices > 0
    init_random_seed(0)

    if args.model_name == "lm":
        benchmark_config = create_benchmark_config(args.model_name)
        model_specs = get_model_specs(args.model_name)
        model_config = create_model_config(args, benchmark_config=benchmark_config, model_specs=model_specs)
        model = model_config["model"]

        if args.dry_run:
391
            train(model_config, model, benchmark_config, model_specs, args)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        else:
            benchmark_language_model(model_config, model, benchmark_config, model_specs, args)
    elif args.model_name == "seq":
        benchmark_config = create_benchmark_config(args.model_name)
        model_specs = get_model_specs(args.model_name)
        model_config = create_model_config(args, benchmark_config=benchmark_config, model_specs=model_specs)
        model = model_config["model"]
        train_seq(model_config, benchmark_config, model_specs, args)
    else:
        raise RuntimeError(f"Unable to recognize model name {args.model_name}")


parser = argparse.ArgumentParser(description="benchmark")
parser.add_argument(
406
407
408
409
410
411
412
    "--dry_run", default=True, action="store_true", help="Run a sample training run without regression testing."
)
parser.add_argument(
    "--debug",
    action="store_true",
    default=True,
    help="Print debugging statements which is more verbose than the default.",
413
414
415
416
)
parser.add_argument(
    "--model_name", default="lm", type=str, help="Language Model(LM) used to benchmark nn.pipe.",
)
417
418
419
parser.add_argument(
    "--use_synthetic_data", default=True, action="store_true", help="Uses synthetic data for running benchmarks."
)
420
parser.add_argument("--use_fp16", action="store_true", default=False)
421
parser.add_argument("--checkpoint_activation", action="store_true", default=True)
422
423
424
425
426
427
428
429
430
431
parser.add_argument("--use_profiler", action="store_true", default=False)


if __name__ == "__main__":
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO if not args.debug else logging.DEBUG)
    logging.info("Benchmark arguments: %s" % args)

    run_benchmark(args)