test_adam.py 8.21 KB
Newer Older
Jun Ru Anderson's avatar
Jun Ru Anderson committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

from copy import deepcopy
import functools

import pytest
import torch

try:
    from fairscale.optim.adam import Adam

    imported_adam = True
except ImportError:
    imported_adam = False

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
skip_if_no_adam = pytest.mark.skipif(not imported_adam, reason="Fairscale Adam not available")


@skip_if_no_cuda
@skip_if_no_adam
def test_step():
    weight = torch.randn(10, 5).cuda().requires_grad_()
    bias = torch.randn(10).cuda().requires_grad_()
    input = torch.randn(5).cuda()
    optimizer = Adam([weight, bias], lr=1e-3)

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(5):
        optimizer.step(fn)
    assert fn().item() < initial_value
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    for group in optimizer.param_groups:
        for p in group["params"]:
            if p.requires_grad:
                assert p.dtype == torch.float32
    with pytest.raises(AttributeError):
        optimizer.fp32_param_groups


@skip_if_no_cuda
@skip_if_no_adam
def test_step_me():
    weight = torch.randn(10, 5).cuda().half().requires_grad_()
    bias = torch.randn(10).cuda().half().requires_grad_()
    input = torch.randn(5).half().cuda()
    optimizer = Adam([weight, bias], lr=1e-3)

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(5):
        optimizer.step(fn)
    assert fn().item() < initial_value
    for group in optimizer.param_groups:
        for p in group["params"]:
            if p.requires_grad:
                assert p.dtype == torch.float16
    with pytest.raises(AttributeError):
        optimizer.fp32_param_groups


@skip_if_no_cuda
@skip_if_no_adam
def test_step_mixed_precision():
    weight = torch.randn(10, 5).cuda().half().requires_grad_()
    bias = torch.randn(10).cuda().half().requires_grad_()
    input = torch.randn(5).half().cuda()
    optimizer = Adam([weight, bias], lr=1e-3, mixed_precision=True)

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(5):
        optimizer.step(fn)

    assert fn().item() < initial_value
    assert len(optimizer.fp32_param_groups) == len(optimizer.param_groups)

    for fp32_group, fp16_group in zip(optimizer.fp32_param_groups, optimizer.param_groups):
        for fp32_p, fp16_p in zip(fp32_group["params"], fp16_group["params"]):

            def assert_almost_zero(x):
                assert abs(x) < 1e-3
                return 1.0

            assert fp32_p.dtype == torch.float32
            if fp16_p.requires_grad:
                assert fp16_p.dtype == torch.float16
                (fp32_p - fp16_p).to("cpu").detach().apply_(assert_almost_zero)
Jun Ru Anderson's avatar
Jun Ru Anderson committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154


@skip_if_no_cuda
@skip_if_no_adam
def test_step_multigpu():
    if not torch.cuda.device_count() > 1:
        return
    weight = torch.randn(10, 5).cuda(0).requires_grad_()
    bias = torch.randn(10).cuda(1).requires_grad_()
    input = torch.randn(5).cuda(0)
    optimizer = Adam([weight, bias], lr=1e-3)

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(5):
        optimizer.step(fn)
    assert fn().item() < initial_value


155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
@skip_if_no_cuda
@skip_if_no_adam
def test_step_multigpu_mixed_precision():
    if not torch.cuda.device_count() > 1:
        return
    weight = torch.randn(10, 5).cuda(0).half().requires_grad_()
    bias = torch.randn(10).cuda(1).half().requires_grad_()
    input = torch.randn(5).cuda(0).half()
    optimizer = Adam([weight, bias], lr=1e-3, mixed_precision=True)

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(5):
        optimizer.step(fn)
    assert fn().item() < initial_value


Jun Ru Anderson's avatar
Jun Ru Anderson committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
@skip_if_no_cuda
@skip_if_no_adam
def test_state_dict():
    weight = torch.randn(10, 5).float().cuda().requires_grad_()
    bias = torch.randn(10).float().cuda().requires_grad_()
    input = torch.randn(5).float().cuda()

    optimizer = Adam([weight, bias], lr=1e-3)

    def fn_base(optimizer, weight, bias, input):
        optimizer.zero_grad()
        loss = (weight.mv(input) + bias).pow(2).sum()
        loss.backward()
        return loss

    fn = functools.partial(fn_base, optimizer, weight, bias, input)

    # Prime the optimizer
    for _i in range(5):
        optimizer.step(fn)
    # Clone the weights and construct new optimizer for them
    weight_c = weight.data.clone().requires_grad_()
    bias_c = bias.data.clone().requires_grad_()
    optimizer_c = Adam([weight_c, bias_c], lr=1e-3)
    fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c, input)
    # Load state dict
    state_dict = deepcopy(optimizer.state_dict())
    state_dict_c = deepcopy(optimizer.state_dict())
    optimizer_c.load_state_dict(state_dict_c)
    # Run both optimizations in parallel
    for _i in range(5):
        optimizer.step(fn)
        optimizer_c.step(fn_c)
        assert torch.equal(weight, weight_c)
        assert torch.equal(bias, bias_c)


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
@skip_if_no_cuda
@skip_if_no_adam
def test_build_fp32_params():
    weight = torch.randn(10, 5).cuda().half().requires_grad_()
    bias = torch.randn(10).cuda().half().requires_grad_()
    optimizer = Adam([weight, bias], lr=1e-3)
    optimizer._build_fp32_params([weight, bias])
    for fp32_group, fp16_group in zip(optimizer.fp32_param_groups, optimizer.param_groups):
        for fp32_p, fp16_p in zip(fp32_group["params"], fp16_group["params"]):

            def assert_almost_zero(x):
                assert abs(x) < 1e-3
                return 1.0

            assert fp32_p.dtype == torch.float32
            if fp16_p.requires_grad:
                assert fp16_p.dtype == torch.float16
                (fp32_p - fp16_p).to("cpu").detach().apply_(assert_almost_zero)


Jun Ru Anderson's avatar
Jun Ru Anderson committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
@skip_if_no_cuda
@skip_if_no_adam
def test_invalid_beta():
    weight = torch.randn(10, 5, requires_grad=True).float().cuda()
    bias = torch.randn(10, requires_grad=True).float().cuda()
    with pytest.raises(ValueError):
        Adam([weight, bias], lr=1e-2, betas=(1.0, 0.0))


@skip_if_no_cuda
@skip_if_no_adam
def test_invalid_weight_decay():
    weight = torch.randn(10, 5, requires_grad=True).float().cuda()
    bias = torch.randn(10, requires_grad=True).float().cuda()
    with pytest.raises(ValueError):
        Adam([weight, bias], lr=1e-2, weight_decay=-1)


@skip_if_no_cuda
@skip_if_no_adam
def test_amsgrad():
    weight = torch.randn(10, 5, requires_grad=True).float().cuda()
    bias = torch.randn(10, requires_grad=True).float().cuda()
    with pytest.raises(RuntimeError):
        Adam([weight, bias], lr=1e-2, amsgrad=True)