test_fsdp_metadata.py 6 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import pytest
import torch
import torch.distributed as dist
8
import torch.multiprocessing as mp
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch.nn as nn

from fairscale.nn import FullyShardedDataParallel
from fairscale.utils.testing import in_temporary_directory, skip_if_single_gpu, temp_files_ctx


class ConvolutionalModel(nn.Module):
    def __init__(self, embedding_size: int, with_fsdp: bool, process_group):
        super().__init__()
        self.conv1 = self._conv_block(3, embedding_size)
        self.conv2: nn.Module = self._conv_block(embedding_size, embedding_size // 2)
        self.conv3: nn.Module = self._conv_block(embedding_size // 2, embedding_size)
        self.pool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
        self.flatten = nn.Flatten(start_dim=1)
        self.relu = nn.ReLU()
        self.fc1: nn.Module = nn.Linear(embedding_size, 2 * embedding_size)
        self.fc2: nn.Module = nn.Linear(2 * embedding_size, 2 * embedding_size)
        self.fc3: nn.Module = nn.Linear(2 * embedding_size, embedding_size + 1)
        self.fc4: nn.Module = nn.Linear(embedding_size + 1, embedding_size)
        if with_fsdp:
            self.conv2 = FullyShardedDataParallel(self.conv2, process_group=process_group)
            self.conv3 = FullyShardedDataParallel(self.conv3, process_group=process_group, flatten_parameters=False)
            self.fc1 = FullyShardedDataParallel(self.fc1, process_group=process_group)
            self.fc3 = FullyShardedDataParallel(self.fc3, process_group=process_group, flatten_parameters=False)

    @staticmethod
    def _conv_block(in_channels: int, out_channels: int):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3)), nn.BatchNorm2d(out_channels), nn.ReLU(),
        )

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.pool(x)
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        x = self.relu(x)
        x = self.fc4(x)
        return x


def _create_model(embedding_size: int, with_fsdp: bool, process_group, flatten_parameters: bool = True):
    model = ConvolutionalModel(with_fsdp=with_fsdp, process_group=process_group, embedding_size=embedding_size).cuda()
    if with_fsdp:
        return FullyShardedDataParallel(model, process_group=process_group, flatten_parameters=flatten_parameters)
    else:
        return model


def _load_sharded_checkpoint(rank: int):
    return torch.load(f"checkpoint_{rank}.torch")  # type: ignore


def _worker(gpu_id: int, sync_file: str, world_size: int, embedding_size: int, flatten_parameters: bool):
    torch.manual_seed(0)
    torch.cuda.set_device(gpu_id)
    torch.distributed.init_process_group(
        backend="nccl", init_method=f"file://{sync_file}", world_size=world_size, rank=gpu_id,
    )
    process_group = torch.distributed.new_group()

    # Create a dummy model with dummy inputs and targets
    batch_size = 4
    input = torch.randn(size=(batch_size, 3, 32, 32)).cuda()
    target = torch.zeros(size=(batch_size, embedding_size)).cuda()
    model = _create_model(
        with_fsdp=True,
        process_group=process_group,
        embedding_size=embedding_size,
        flatten_parameters=flatten_parameters,
    )
    criterion = nn.MSELoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

    # Train the model for a few epochs
    for epoch in range(2):
        out = model(input)
        loss = criterion(out, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # Save a bunch of checkpoint, one by shard
    cp_data = {
        "weights": {k: v.cpu() for k, v in model.local_state_dict().items()},
        "meta": model.local_metadata_dict(),
    }
    torch.save(cp_data, f"checkpoint_{gpu_id}.torch")

    # Wait for all files to be written on the disk
    dist.barrier()  # type: ignore

    # Reconstruct a full checkpoint from the sharded checkpoints
    all_checkpoints = [_load_sharded_checkpoint(rank) for rank in range(world_size)]
    consolidated_checkpoint = FullyShardedDataParallel.consolidate_shard_weights(
        shard_weights=[c["weights"] for c in all_checkpoints], shard_metadata=[c["meta"] for c in all_checkpoints],
    )

    # Check that the reconstructed parameters are correct and of the right shape
    full_model = _create_model(with_fsdp=False, process_group=process_group, embedding_size=embedding_size)
    full_model_state_dict = full_model.state_dict()
    assert set(full_model_state_dict.keys()) == set(consolidated_checkpoint.keys())
    for k in full_model_state_dict.keys():
        assert consolidated_checkpoint[k].shape == full_model_state_dict[k].shape

    # Verify that the checkpoint can be loaded by a FSDP model
    loaded_model = _create_model(
        with_fsdp=True,
        process_group=process_group,
        embedding_size=embedding_size,
        flatten_parameters=flatten_parameters,
    )
    loaded_model.load_state_dict(consolidated_checkpoint)
    for m in loaded_model.modules():
        if isinstance(m, FullyShardedDataParallel):
            m._reset_lazy_init()

    # Verify that the model saved and the model loaded give the same results
    with torch.no_grad():
        before_checkpoint_loss = criterion(model(input), target).item()
        after_checkpoint_loss = criterion(loaded_model(input), target).item()
        assert before_checkpoint_loss == after_checkpoint_loss


@skip_if_single_gpu
@pytest.mark.parametrize("embedding_size", [128, 129])
@pytest.mark.parametrize("flatten_parameters", [True, False])
def test_consolidation(embedding_size: int, flatten_parameters: bool):

    world_size = 2
    with in_temporary_directory():
        with temp_files_ctx(num=1) as temp_files:
            mp.spawn(_worker, (temp_files[0], world_size, embedding_size, flatten_parameters), nprocs=world_size)