test_pipe.py 33.4 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
32
33
from fairscale.nn.model_parallel.initialize import (
    destroy_model_parallel,
    get_pipeline_parallel_group,
    initialize_model_parallel,
)
34
from fairscale.nn.pipe import LazyModule, MultiProcessPipe
35
from fairscale.utils.testing import get_worker_map, set_random_seed, torch_spawn, torch_version
Tom Birch's avatar
Tom Birch committed
36
37
38


@torch_spawn([2])
39
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
40
def parameters(pipeline_style):
Tom Birch's avatar
Tom Birch committed
41
    model = nn.Sequential(nn.Linear(1, 1))
42
    pipe = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
69
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
70
71
    else:
        t = torch.empty(100).cuda()
72
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
110
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
111
def public_attrs(pipeline_style):
Tom Birch's avatar
Tom Birch committed
112
113
114
115
116
117
118
119
120
    class MyString:
        def __init__(self, value):
            self.value = value

        def __str__(self):
            return self.value

    model = nn.Sequential(nn.Linear(1, 1))

121
    pipe = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
122
123
        model,
        balance=(1,),
124
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        worker_map=get_worker_map(),
        chunks=42.000,
        checkpoint=MyString("always"),
    )

    assert pipe.balance == [1]
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
139
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
140
def sequential_like(balance, pipeline_style):
Tom Birch's avatar
Tom Birch committed
141
142
143
144
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
145
    model = MultiProcessPipe(model, balance, style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
178
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
179
def balance_wrong_length(pipeline_style):
Tom Birch's avatar
Tom Birch committed
180
181
182
183
184
185
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
186
        MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
187
188

    with pytest.raises(ValueError):
189
        MultiProcessPipe(model, balance=[3], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
190
191
192


@torch_spawn([2])
193
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
194
def balance_less_than_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
195
196
197
198
199
200
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
201
        MultiProcessPipe(model, balance=[0, 2], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
202
203

    with pytest.raises(ValueError):
204
        MultiProcessPipe(model, balance=[-1, 3], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
205
206
207


@torch_spawn([1])
208
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
209
def chunks_less_than_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
210
211
212
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
213
        MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
214
215

    with pytest.raises(ValueError):
216
        MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
217
218
219


@torch_spawn([1])
220
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
221
def too_few_devices(pipeline_style):
Tom Birch's avatar
Tom Birch committed
222
223
224
225
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
226
        model = MultiProcessPipe(model, balance=[1, 1, 1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
227
228
229


@torch_spawn([1])
230
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
231
def batch_size_indivisible(pipeline_style):
Tom Birch's avatar
Tom Birch committed
232
    model = nn.Sequential(nn.Linear(1, 1))
233
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
234
235
236
237
238
239
240
241
242

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
243
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
244
def batch_size_small(pipeline_style):
Tom Birch's avatar
Tom Birch committed
245
    model = nn.Sequential(nn.Linear(1, 1))
246
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
247
248
249
250
251
252
253
254
255

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
256
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
257
def checkpoint_mode(pipeline_style):
Tom Birch's avatar
Tom Birch committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

276
    always = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
277
278
        model,
        balance=[1],
279
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
280
281
282
283
284
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="always",
        pipelined_backward=False,
    )
285
    except_last = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
286
287
        model,
        balance=[1],
288
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
289
290
291
292
293
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="except_last",
        pipelined_backward=False,
    )
294
    never = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
295
296
        model,
        balance=[1],
297
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="never",
        pipelined_backward=False,
    )

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
314
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
315
def checkpoint_mode_invalid(pipeline_style):
Tom Birch's avatar
Tom Birch committed
316
317
318
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
319
        MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
320
321
            model,
            balance=[1],
322
            style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
323
324
325
326
327
328
329
            worker_map=get_worker_map(),
            chunks=2,
            checkpoint="INVALID_CHECKPOINT",
        )


@torch_spawn([1])
330
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
331
def checkpoint_mode_when_chunks_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
332
333
334
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
335
    MultiProcessPipe(
336
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="except_last",
Tom Birch's avatar
Tom Birch committed
337
    )
338
339
340
341
342
343
    MultiProcessPipe(
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="always"
    )
    MultiProcessPipe(
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="never"
    )
Tom Birch's avatar
Tom Birch committed
344
345
346


@torch_spawn([1])
347
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
348
def checkpoint_eval(pipeline_style):
Tom Birch's avatar
Tom Birch committed
349
    model = nn.Sequential(nn.Linear(1, 1))
350
    model = MultiProcessPipe(
351
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    )
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
377
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
378
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
379
def checkpoint_non_float_input(pipeline_style):
Tom Birch's avatar
Tom Birch committed
380
381
382
383
384
385
386
387
388
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
389
    model = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
390
391
        model,
        balance=[1, 1],
392
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
393
394
395
396
397
398
399
400
401
402
403
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint="always",
        pipelined_backward=False,
    )

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()
404
    elif pipeline_style == MultiProcessPipe.MultiProcess:
Tom Birch's avatar
Tom Birch committed
405
406
        model.back_helper(output)

407
408
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
409
410

@torch_spawn([1])
411
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
412
def no_grad(pipeline_style):
Tom Birch's avatar
Tom Birch committed
413
    model = nn.Sequential(nn.Linear(1, 1))
414
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
415
416
417
418
419
420
421
422
423
424
425
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

426
    partition = model.partitions[0]
427
    partition.module.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
428
429
430
431
432
433
434
435

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
436
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
437
def exception(pipeline_style):
Tom Birch's avatar
Tom Birch committed
438
439
440
441
442
443
444
445
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
446
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
447
448
449
450
451
452
453

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
454
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
455
@pytest.mark.xfail(strict=True)
456
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
457
def exception_early_stop_asap(pipeline_style):
Tom Birch's avatar
Tom Birch committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
485
    model = MultiProcessPipe(model, [1, 1, 1, 1], style=pipeline_style, worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
486
487
488
489
490
491
492
493
494

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
495
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
496
def input_pair(pipeline_style):
Tom Birch's avatar
Tom Birch committed
497
498
499
500
501
502
503
504
505
506
507
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
508
    model = MultiProcessPipe(
509
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    )

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
524
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
525
def input_singleton(pipeline_style):
Tom Birch's avatar
Tom Birch committed
526
527
528
529
530
531
532
533
534
535
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
536
    model = MultiProcessPipe(
537
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
538
539
540
541
542
543
544
545
546
547
548
549
550
    )

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
551
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
552
def input_varargs(pipeline_style):
Tom Birch's avatar
Tom Birch committed
553
    model = nn.Sequential(nn.Linear(1, 1))
554
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
555
556
557
558
559
560
561
562
563
564

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
565
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
566
def non_tensor(pipeline_style):
Tom Birch's avatar
Tom Birch committed
567
568
569
570
571
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
572
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
573
574
575
576
577
578
579
580
581
582
583
584
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
585
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
586
def non_tensor_tuple(pipeline_style):
Tom Birch's avatar
Tom Birch committed
587
588
589
590
591
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
592
    model = MultiProcessPipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
607
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
608
def deferred_batch_norm(checkpoint, lazy, pipeline_style):
Tom Birch's avatar
Tom Birch committed
609
610
611
612
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
613
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
614
615
    else:
        model = nn.Sequential(pipe_bn)
616
    pipe = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
617
618
        model,
        balance=[1],
619
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
637
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
638
def deferred_batch_norm_params(checkpoint, lazy, pipeline_style):
Tom Birch's avatar
Tom Birch committed
639
640
641
642
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
643
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
644
645
    else:
        model = nn.Sequential(pipe_bn)
646
    pipe = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
647
648
        model,
        balance=[1],
649
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


667
@torch_spawn([4])
668
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
669
def devices(pipeline_style):
Tom Birch's avatar
Tom Birch committed
670
671
672
673
674
675
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
676
    model = MultiProcessPipe(model, [1, 1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
677
678

    # Extra devices must be discarded.
679
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
680
681
682
683
        assert model.pipeline is None


@torch_spawn([2])
684
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
685
def partitions(pipeline_style):
Tom Birch's avatar
Tom Birch committed
686
687
688
689
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
690
    model = MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
691

692
    assert isinstance(model.partitions, list)
Tom Birch's avatar
Tom Birch committed
693
    assert len(model) == 1
694
    assert isinstance(model.partitions[0].module, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
695

696
697
698
699
    if model.group.rank() == 0:
        assert "0.0.weight" in model.state_dict()
    else:
        assert "0.1.weight" in model.state_dict()
Tom Birch's avatar
Tom Birch committed
700
701
702
703


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
704
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
705
def deny_moving(pipeline_style):
Tom Birch's avatar
Tom Birch committed
706
707
708
709
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
710
    model = MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
728
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
729
def empty_module(pipeline_style):
Tom Birch's avatar
Tom Birch committed
730
731
    # Empty sequential module is not illegal.
    model = nn.Sequential()
732
    model = MultiProcessPipe(model, [], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
733
734
735
736

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

737
    # But only tensor or tensors is legal in MultiProcessPipe.
Tom Birch's avatar
Tom Birch committed
738
739
740
741
742
743

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
744
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
745
def named_children(pipeline_style):
Tom Birch's avatar
Tom Birch committed
746
747
748
749
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
750
    model = MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
751
752

    names = set(n for n, _ in model.named_modules())
753
754
755
756
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
757

758
    # MultiProcessPipe doesn't support __getattr__. Unlike nn.Sequential, MultiProcessPipe requires
Tom Birch's avatar
Tom Birch committed
759
760
761
762
763
764
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
765
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
766
def recommend_auto_balance(pipeline_style):
Tom Birch's avatar
Tom Birch committed
767
768
    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # balance is required
769
        MultiProcessPipe(nn.Sequential())
Tom Birch's avatar
Tom Birch committed
770
771
772

    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
773
        MultiProcessPipe(nn.Sequential(), [1])
Tom Birch's avatar
Tom Birch committed
774
775
776

    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # module and sum of balance have different length (module: 2, sum of balance: 1)
777
        MultiProcessPipe(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])
Tom Birch's avatar
Tom Birch committed
778
779
780


@torch_spawn([2])
781
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
782
def lazy_construction(pipeline_style):
Tom Birch's avatar
Tom Birch committed
783
784
785
786
787
788
789
790
791
792
793
794
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
795
796
797
798
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
799
800
    ]

801
    pipe = MultiProcessPipe(model, balance=[2, 2], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
802
803
804
805
806
807
808
809

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
810
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
811
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
812
def missing_worker_map(pipeline_style):
Tom Birch's avatar
Tom Birch committed
813
814
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

815
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
816
        MultiProcessPipe(model, [1, 1], style=pipeline_style)
Tom Birch's avatar
Tom Birch committed
817
818
819
820


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
821
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
822
def verify_module_duplicate_parameters_on_distinct_partitions(pipeline_style):
Tom Birch's avatar
Tom Birch committed
823
824
825
826
827
828
829
830
831
832
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
833
        MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
834
835
836


@torch_spawn([4])
837
@pytest.mark.parametrize("pipeline_style", [MultiProcessPipe.MultiProcess, MultiProcessPipe.AsyncSchedule])
838
def pipelined_backward(pipeline_style):
Tom Birch's avatar
Tom Birch committed
839
840
841
842
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

    destroy_model_parallel()
    initialize_model_parallel(1, 4)
843
    pipe = MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
844
845
846
847
848

    assert pipe.pipelined_backward is False

    destroy_model_parallel()
    initialize_model_parallel(2, 2)
849
    pipe = MultiProcessPipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
850
851

    assert pipe.pipelined_backward is True
852
853
854
855
856
857


@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
858
859
860
    pipe = MultiProcessPipe(
        model, [1, 1, 1, 1], style=MultiProcessPipe.AsyncSchedule, worker_map=get_worker_map(), chunks=10
    )
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()


@torch_spawn([4])
def reuse_lazy():
    if False:  # speed
        reused = LazyModule(lambda: nn.Linear(10, 10))
        model = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
        # model = [reused, reused, nn.Linear(10, 10), nn.ReLU(), reused, reused, nn.ReLU(), reused, reused, nn.ReLU()]
876
        pipe = MultiProcessPipe(model, [3, 1, 1], style=MultiProcessPipe.AsyncSchedule, worker_map=get_worker_map())
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        pipe.eval()
        output = pipe(torch.rand(10))

        print(f"output on {pipe.group.rank()}, {output}")
        torch.distributed.barrier()

    set_random_seed(1234)
    # test both foward
    reused = nn.Linear(10, 10)
    layers = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
    model = nn.Sequential(*layers)
    model.eval()

    set_random_seed(1234)
    # ensure identical weights but no sharing between model and pipe
    reused = nn.Linear(10, 10)
    layers = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
894
    pipe = MultiProcessPipe(layers, [3, 1, 1], style=MultiProcessPipe.AsyncSchedule, worker_map=get_worker_map())
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    pipe.eval()
    model_optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    pipe_optimizer = torch.optim.SGD(pipe.parameters(), lr=0.01, momentum=0.9) if len(list(pipe.parameters())) else None
    inputs = torch.rand(10)
    if False:  # speed
        model_out = model(inputs)
        pipe_out = pipe(inputs)

        torch.distributed.barrier()

        if pipe.final_stage:
            assert torch.equal(model_out, pipe_out)

    model.train()
    pipe.train()
    model_out = model(inputs)
    pipe_out = pipe(inputs)
    if pipe.final_stage:
        pipe_loss = pipe_out.mean()
        pipe_loss.backward()

    model_loss = model_out.mean()
    model_loss.backward()

    model_optimizer.step()
    if pipe_optimizer:
        pipe_optimizer.step()

    model.eval()
    pipe.eval()
    model_out = model(inputs)
    pipe_out = pipe(inputs)

    print(f"before barrier on {torch.distributed.get_rank()}")
    torch.distributed.barrier()
    print(f"after barrier on {torch.distributed.get_rank()}")

    if pipe.final_stage:
        assert torch.equal(model_out, pipe_out)


def test_instantiate_partition():
    from fairscale.nn.pipe.async_schedule import Location
938
    from fairscale.nn.pipe.multiprocess_pipe import instantiate_partition
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

    class FakeGroup:
        def __init__(self, rank, size):
            self._rank = rank
            self._size = size

        def rank(self):
            return self._rank

        def size(self):
            return self._size

    def check_partitions(model, balance, expected_order, expected_ranks):
        """Check the instantiated model matches expectation of order and rank
        model: a list of modules or an nn.Sequential
954
        balance: the balance argument to MultiProcessPipe
955
956
957
958
959
960
961
962
963
964
965
        expected_order: the index of modules in `model` in the order they will
            be executed, grouped by nn.Sequential
        expected_rank: the rank that each module will be executed on
        """

        invocations = []
        invocation_wrapper = dict()

        # Collect `Invocation` and `Invocation` -> `ModuleWrapper` mapping from
        # instantiated model
        for rank in range(len(balance)):
966
967
968
            instantiated = instantiate_partition(
                model, balance, FakeGroup(rank, len(balance)), MultiProcessPipe.AsyncSchedule
            )
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
            for part in instantiated:
                assert isinstance(part.module, nn.Sequential)
                for inv in part.invocations:
                    invocations.append(inv)
                    invocation_wrapper[inv] = part

        modules = []
        prev = None
        current = Location(0, 0)
        ranks = []

        for order, inv in enumerate(sorted(invocations, key=lambda x: x.order)):
            # Check integrity of Location chain
            assert inv.order == order
            assert inv.source == prev
            assert inv.this == current
            prev = inv.this
            current = inv.dest
            modules.append(list(invocation_wrapper[inv].module.children()))
            ranks.append(inv.this.stage)

        # assert len(modules) == len(expected_order)
        for left, right in zip(modules, expected_order):
            assert len(left) == len(right), f"{right}"
            assert list(map(id, left)) == list(map(id, (model[e] for e in right))), f"{right}"

        assert ranks == expected_ranks

    reused = nn.Linear(20, 20)
    model = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
    balance = [3, 1, 1]

    check_partitions(
        model, balance, expected_order=[[0], [1, 2], [0], [4], [0], [6]], expected_ranks=[0, 0, 0, 1, 0, 2]
    )

    reused2 = nn.Linear(5, 5)
    model = [reused, reused2, nn.Linear(10, 10), nn.ReLU(), reused, reused2, nn.ReLU(), reused, reused2, nn.ReLU()]
    balance = [4, 1, 1]

    check_partitions(
        model,
        balance,
        expected_order=[[0], [1], [2, 3], [0], [1], [6], [0], [1], [9]],
        expected_ranks=[0, 0, 0, 0, 0, 1, 0, 0, 2],
    )

    reused2 = nn.Linear(5, 5)
    model = [
        nn.Linear(10, 10),
        reused,
        nn.Linear(10, 10),
        nn.ReLU(),
        reused,
        reused2,
        nn.ReLU(),
        reused,
        reused2,
        nn.ReLU(),
    ]
    # 0 1 2 3 1 5 6 1 5 9
    balance = [4, 2, 1]

    check_partitions(
        model,
        balance,
        expected_order=[[0], [1], [2, 3], [1], [5], [6], [1], [5], [9]],
        expected_ranks=[0, 0, 0, 0, 1, 1, 0, 1, 2],
    )