test_sharded_ddp.py 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Testing OssDdp class.
"""

10
import copy
11
import tempfile
12
from typing import List
13

14
import numpy as np
15
16
17
18
19
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import Linear, Sequential
20
from torch.nn.parallel import DistributedDataParallel as DDP
21

22
from fairscale.nn.data_parallel import ShardedDataParallel
23
from fairscale.optim import OSS
24
25
26

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
skip_if_single_gpu = pytest.mark.skipif(torch.cuda.device_count() < 2, reason="multiple GPUs required")
27
from contextlib import suppress
28

29
30
from fairscale.utils.testing import GPT2

31
32
33
34
35
36
37

def run_one_step(rank, world_size, backend, device, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    torch.manual_seed(rank)
    np.random.seed(rank)

    def check(broadcast_buffers: bool, grad_accumulation: bool = False) -> None:
        # Any model works. Add one different buffer per rank
        model = Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))
        model.register_buffer("test_buffer", torch.ones((1)) * rank)
        model.to(device)

        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=0.01, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer, broadcast_buffers=broadcast_buffers)

        def check_same_model_params(same_params: bool):
            # Check that all the params are the same on all ranks
            # This should be true with and without broadcast_buffers, we don't have any real buffer here
            receptacle: List[torch.Tensor] = []

            if dist.get_backend() != "nccl":
                for pg in optimizer.param_groups:
                    for p in pg["params"]:
                        # Check the params
                        receptacle = [p.clone() for _ in range(world_size)] if rank == 0 else []
                        dist.gather(p, receptacle, dst=0)
                        if rank == 0:
                            for sync_p in receptacle[1:]:
                                if same_params:
                                    assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"
                                else:
                                    assert not torch.all(
                                        torch.eq(receptacle[0], sync_p)
                                    ), "Gradients should not have been synced"

                # Check that all the buffers are in sync (authoritative rank is 0, its buffer is 0)
                if broadcast_buffers:
                    for b in ddp_model.buffers():
                        receptacle = [b.clone() for _ in range(world_size)] if rank == 0 else []
                        dist.gather(b, receptacle, dst=0)
                        if rank == 0:
                            for sync_b in receptacle[1:]:
                                if same_params:
                                    assert torch.all(torch.eq(receptacle[0], sync_b)), "Models differ in between ranks"
                                else:
                                    assert not torch.all(
                                        torch.eq(receptacle[0], sync_b)
                                    ), "Gradients should not have been synced"

                        assert b.cpu().item() == 0.0

        # The model should be synchronized in between the ranks at ShardedDataParallel construction time, check that
        check_same_model_params(same_params=True)

        # Optim loop
        def closure():
            optimizer.zero_grad()

            with ddp_model.no_sync() if grad_accumulation else suppress():
                input_tensor = torch.rand((64, 2)).to(device)
                loss = ddp_model(input_tensor).abs().sum()
                loss.backward()
            return loss

        # The models should stay the same in between the ranks
        for i in range(5):
            _ = optimizer.step(closure=closure)
            # when running on cpu/gloo the "nodes" are not really different
            same_params = device == torch.device("cpu") or grad_accumulation
            check_same_model_params(same_params=same_params)

    check(broadcast_buffers=False)
    check(broadcast_buffers=True)
    check(broadcast_buffers=False, grad_accumulation=True)
    check(broadcast_buffers=True, grad_accumulation=True)
110
111
    dist.destroy_process_group()

112
113
114
115

def run_test(backend, device, world_size=2):
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_one_step, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)
Min Xu's avatar
Min Xu committed
116
117


118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def test_step_on_cpu():
    run_test(backend=dist.Backend.GLOO, device=torch.device("cpu"), world_size=4)


@skip_if_no_cuda
@skip_if_single_gpu
def test_step_on_gpu():
    run_test(backend=dist.Backend.NCCL, device=torch.device("cuda"))


def run_ddp_parity(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Any model works. Add one different buffer per rank
    model = Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))
    model.register_buffer("test_buffer", torch.ones((1)) * rank)
    model.to(device)

    sharded_optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    sharded_ddp_model = ShardedDataParallel(module=model, sharded_optimizer=sharded_optimizer, broadcast_buffers=True)

    ddp_model_single = copy.deepcopy(model)
    ddp_optimizer = torch.optim.SGD(ddp_model_single.parameters(), lr=1e-3, momentum=0.99)
    ddp_model = DDP(ddp_model_single, device_ids=[rank], broadcast_buffers=True)

    def check_same_model_params():
        for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
            for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
                assert torch.allclose(
                    p, ddp_p, atol=1e-3
                ), f"Model parameters differ in between DDP and ShardedDDP {p} {ddp_p}"

        for b, ddp_b in zip(sharded_ddp_model.buffers(), ddp_model.buffers()):
            assert torch.allclose(b, ddp_b, atol=1e-3), "Model buffers differ in between DDP and ShardedDDP"

    # The model should be synchronized in between the ranks at construction time, check that
    check_same_model_params()

    # The models should stay the same in between the ranks
    for i in range(20):
        input_tensor = torch.rand((64, 2)).to(device)

        def closure_ddp(input_tensor=input_tensor):
            ddp_optimizer.zero_grad()
            ddp_loss = ddp_model(input_tensor).abs().sum()
            ddp_loss.backward()
            return ddp_loss

        def closure_sharded(input_tensor=input_tensor):
            sharded_optimizer.zero_grad()
            sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
            sharded_loss.backward()
            return sharded_loss

        _ = ddp_optimizer.step(closure=closure_ddp)
        _ = sharded_optimizer.step(closure=closure_sharded)

        check_same_model_params()

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)


def run_ddp_parity_two_optim(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)  # Any model works. Add one different buffer per rank

    model = Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))
    model.register_buffer("test_buffer", torch.ones((1)) * rank)
    model.to(device)
    n_half_params = len(list(model.parameters())) // 2

    sharded_optimizer = OSS(
        params=list(model.parameters())[:n_half_params], optim=torch.optim.SGD, lr=1e-3, momentum=0.99
    )
    sharded_optimizer_2 = OSS(
        params=list(model.parameters())[n_half_params:], optim=torch.optim.SGD, lr=1e-3, momentum=0.99
    )

    sharded_ddp_model = ShardedDataParallel(module=model, sharded_optimizer=sharded_optimizer, broadcast_buffers=True)

    ddp_model_single = copy.deepcopy(model)
    ddp_optimizer = torch.optim.SGD(list(ddp_model_single.parameters())[:n_half_params], lr=1e-3, momentum=0.99)
    ddp_optimizer_2 = torch.optim.SGD(list(ddp_model_single.parameters())[n_half_params:], lr=1e-3, momentum=0.99)
    ddp_model = DDP(ddp_model_single, device_ids=[rank], broadcast_buffers=True)

    def check_same_model_params():
        for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
            for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
                assert torch.allclose(
                    p, ddp_p, atol=1e-3
                ), f"Model parameters differ in between DDP and ShardedDDP {p} {ddp_p}"
        for b, ddp_b in zip(sharded_ddp_model.buffers(), ddp_model.buffers()):
            assert torch.allclose(b, ddp_b, atol=1e-3), "Model buffers differ in between DDP and ShardedDDP"

    check_same_model_params()  # The models should stay the same in between the ranks

    for i in range(20):
        input_tensor = torch.rand((64, 2)).to(device)

        # Run DDP
        ddp_optimizer.zero_grad()
        ddp_optimizer_2.zero_grad()
        ddp_loss = ddp_model(input_tensor).abs().sum()
        ddp_loss.backward()
        ddp_optimizer.step()
        ddp_optimizer_2.step()

        # Run Sharded
        sharded_optimizer.zero_grad()
        sharded_optimizer_2.zero_grad()
        sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
        sharded_loss.backward()
        sharded_optimizer.step()
        sharded_optimizer_2.step()
        check_same_model_params()

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity_two_optim():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = 2
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity_two_optim, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def run_test_two_inputs(rank, world_size, backend, device, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)

    class _DoubleInput(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.mlp = Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))

        def forward(self, x, y):
            x1 = self.mlp(x)
            x2 = self.mlp(y)
            return torch.cat((x1, x2), dim=1)

    model = _DoubleInput().to(device)

    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=0.01, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer)

    # Optim loop
    def closure():
        optimizer.zero_grad()
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
        _ = optimizer.step(closure=closure)
Min Xu's avatar
Min Xu committed
299

300
301
    dist.destroy_process_group()

Min Xu's avatar
Min Xu committed
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def test_inputs():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cpu"
    mp.spawn(run_test_two_inputs, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)


def test_ddp_attributes():
    # Check that ShardedDDP exposes the same attributes as Pytorch's DDP
    # - is multi_device_module
    # - device_type

    url = "file://" + tempfile.mkstemp()[1]
    dist.init_process_group(init_method=url, backend="gloo", rank=0, world_size=1)

    model = Sequential(Linear(2, 3), Linear(3, 3))
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=0.01, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer)

    assert hasattr(ddp_model, "is_multi_device_module")
    assert hasattr(ddp_model, "device_type")
    dist.destroy_process_group()


def run_test_two_optimizers(rank, world_size, backend, device, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)

    class _DoubleInput(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.mlp = Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))

        def forward(self, x, y):
            x1 = self.mlp(x)
            x2 = self.mlp(y)
            return torch.cat((x1, x2), dim=1)

    model = _DoubleInput().to(device)

    parameters = list(model.parameters())
    optimizer_1 = OSS(params=parameters[:-10], optim=torch.optim.SGD, lr=0.01, momentum=0.99)
    optimizer_2 = OSS(params=parameters[-10:], optim=torch.optim.SGD, lr=0.01, momentum=0.99)
    ddp_model = ShardedDataParallel(model, [optimizer_1, optimizer_2])

    # Optim loop
    def closure():
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
363
364
365
366
367
        optimizer_1.zero_grad()
        optimizer_2.zero_grad()

        _ = optimizer_1.step(closure=closure)
        _ = optimizer_2.step(closure=closure)
368
369
370
371
372
373
374
375
376
377

    dist.destroy_process_group()


def test_two_optimizers():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cpu"
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    mp.spawn(run_test_two_optimizers, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)


def run_test_gpt2(rank, world_size, backend, device, temp_file_name):
    INPUT_DIM = 32
    BACH_SIZE = 10
    STEPS = 10

    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = GPT2(
        embed_dim=512, num_heads=2, num_layers=24, num_positions=INPUT_DIM * INPUT_DIM, num_vocab=512, num_classes=2
    ).to(device)
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=0.01, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer)

    # Optim loop
    def closure():
        optimizer.zero_grad()
        # Force int inputs to prevent the first grad from firing
        input_tensor = torch.randint(10, (BACH_SIZE, INPUT_DIM)).to(device)
        loss = ddp_model(input_tensor).abs().sum()
        loss.backward()
        return loss

    # Check for bucketing overflows
    for i in range(STEPS):
        _ = optimizer.step(closure=closure)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_gpt2():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cuda"
    mp.spawn(run_test_gpt2, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)