__init__.pyi 118 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

# @generated from torch/__init__.pyi.in

Tom Birch's avatar
Tom Birch committed
5
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator, Iterable
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from torch._six import inf

import builtins

# These identifiers are reexported from other modules.  These modules
# are not mypy-clean yet, so in order to use this stub file usefully
# from mypy you will need to specify --follow-imports=silent.
# Not all is lost: these imports still enable IDEs like PyCharm to offer
# autocomplete.
#
# Note: Why does the syntax here look so strange?  Import visibility
# rules in stubs are different from normal Python files!  You must use
# 'from ... import ... as ...' syntax to cause an identifier to be
# exposed (or use a wildcard); regular syntax is not exposed.
from .random import set_rng_state as set_rng_state, get_rng_state as get_rng_state, \
    manual_seed as manual_seed, initial_seed as initial_seed, seed as seed
from ._tensor_str import set_printoptions as set_printoptions
from .functional import *
from .serialization import save as save, load as load
from .autograd import no_grad as no_grad, enable_grad as enable_grad, \
    set_grad_enabled as set_grad_enabled
from . import cuda as cuda
from . import optim as optim
from . import nn as nn

#MODIFIED BY TORCHGPIPE
from . import backends
33
from . import distributed
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
34
35
36
from . import version
#END

Tom Birch's avatar
Tom Birch committed
37
class dtype:
38
    is_floating_point: builtins.bool
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
39

40
41
42
43
class finfo:
    def __init__(self, dtype: dtype): ...
    eps: float

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class layout: ...

strided : layout = ...

class memory_format: ...

contiguous_format: memory_format = ...

class qscheme: ...

per_tensor_affine: qscheme = ...

# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_int = builtins.int
_float = builtins.float
_bool = builtins.bool

class device:
    type: str
    index: _int

#MODIFIED BY TORCHGPIPE
    @overload
    def __init__(self, device: device) -> None: ...
#END

    @overload
    def __init__(self, device: Union[_int, str]) -> None: ...

    @overload
    def __init__(self, type: str, index: _int) -> None: ...

#MODIFIED BY TORCHGPIPE
class Size(tuple):
    def numel(self) -> _int: ...
#END

#MODIFIED BY TORCHGPIPE
class Storage:
    def size(self) -> _int: ...
    def element_size(self) -> _int: ...
#END

# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_dtype = dtype
_device = device
_qscheme = qscheme
_size = Union[Size, List[_int], Tuple[_int, ...]]
_layout = layout

# Meta-type for "numeric" things; matches our docs
Number = Union[builtins.int, builtins.float, builtins.bool]

class Generator:
    device: _device = ...

    @overload
    def __init__(self, device: Optional[_device]=None) -> None: ...

    @overload
    def __init__(self, device: Union[_int, str]) -> None: ...

# TODO: One downside of doing it this way, is direct use of
# torch.tensor.Tensor doesn't get type annotations.  Nobody
# should really do that, so maybe this is not so bad.
class Tensor:
    requires_grad: _bool = ...
    grad: Optional[Tensor] = ...
    data: Tensor = ...
    names: List[str] = ...
Tom Birch's avatar
Tom Birch committed
116
117
118

    def __init__(self, *args, **kwargs) -> None: ...

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    @property
    def dtype(self) -> _dtype: ...
    @property
    def shape(self) -> Size: ...
    @property
    def device(self) -> _device: ...
    @property
    def T(self) -> Tensor: ...
    @property
    def grad_fn(self) -> Optional[Any]: ...
    @property
    def ndim(self) -> _int: ...
    @property
    def layout(self) -> _layout: ...

    def __abs__(self) -> Tensor: ...
    def __add__(self, other: Any) -> Tensor: ...
    @overload
    def __and__(self, other: Number) -> Tensor: ...
    @overload
    def __and__(self, other: Tensor) -> Tensor: ...
    @overload
    def __and__(self, other: Any) -> Tensor: ...
    def __bool__(self) -> builtins.bool: ...
    def __div__(self, other: Any) -> Tensor: ...
    def __eq__(self, other: Any) -> Tensor: ...  # type: ignore
    def __float__(self) -> builtins.float: ...
    def __floordiv__(self, other: Any) -> Tensor: ...
    def __ge__(self, other: Any) -> Tensor: ...  # type: ignore
    def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
    def __gt__(self, other: Any) -> Tensor: ...  # type: ignore
    def __iadd__(self, other: Any) -> Tensor: ...
    @overload
    def __iand__(self, other: Number) -> Tensor: ...
    @overload
    def __iand__(self, other: Tensor) -> Tensor: ...
    @overload
    def __iand__(self, other: Any) -> Tensor: ...
    def __idiv__(self, other: Any) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Number) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Any) -> Tensor: ...
    def __imul__(self, other: Any) -> Tensor: ...
    def __index__(self) -> builtins.int: ...
    def __int__(self) -> builtins.int: ...
    def __invert__(self) -> Tensor: ...
    @overload
    def __ior__(self, other: Number) -> Tensor: ...
    @overload
    def __ior__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ior__(self, other: Any) -> Tensor: ...
    @overload
    def __irshift__(self, other: Number) -> Tensor: ...
    @overload
    def __irshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __irshift__(self, other: Any) -> Tensor: ...
    def __isub__(self, other: Any) -> Tensor: ...
    def __itruediv__(self, other: Any) -> Tensor: ...
    @overload
    def __ixor__(self, other: Number) -> Tensor: ...
    @overload
    def __ixor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ixor__(self, other: Any) -> Tensor: ...
    def __le__(self, other: Any) -> Tensor: ...  # type: ignore
    def __long__(self) -> builtins.int: ...
    @overload
    def __lshift__(self, other: Number) -> Tensor: ...
    @overload
    def __lshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __lshift__(self, other: Any) -> Tensor: ...
    def __lt__(self, other: Any) -> Tensor: ...  # type: ignore
    def __matmul__(self, other: Any) -> Tensor: ...
    def __mod__(self, other: Any) -> Tensor: ...
    def __mul__(self, other: Any) -> Tensor: ...
    def __ne__(self, other: Any) -> Tensor: ...  # type: ignore
    def __neg__(self) -> Tensor: ...
    def __nonzero__(self) -> builtins.bool: ...
    @overload
    def __or__(self, other: Number) -> Tensor: ...
    @overload
    def __or__(self, other: Tensor) -> Tensor: ...
    @overload
    def __or__(self, other: Any) -> Tensor: ...
    def __pow__(self, other: Any) -> Tensor: ...
    def __radd__(self, other: Any) -> Tensor: ...
    def __rfloordiv__(self, other: Any) -> Tensor: ...
    def __rmul__(self, other: Any) -> Tensor: ...
    @overload
    def __rshift__(self, other: Number) -> Tensor: ...
    @overload
    def __rshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __rshift__(self, other: Any) -> Tensor: ...
    def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
    def __sub__(self, other: Any) -> Tensor: ...
    def __truediv__(self, other: Any) -> Tensor: ...
    @overload
    def __xor__(self, other: Number) -> Tensor: ...
    @overload
    def __xor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __xor__(self, other: Any) -> Tensor: ...
    def _coalesced_(self, coalesced: _bool) -> Tensor: ...
    def _dimI(self) -> _int: ...
    def _dimV(self) -> _int: ...
    def _indices(self) -> Tensor: ...
    def _nnz(self) -> _int: ...
    def _values(self) -> Tensor: ...
    def abs(self) -> Tensor: ...
    def abs_(self) -> Tensor: ...
    def acos(self) -> Tensor: ...
    def acos_(self) -> Tensor: ...
    def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def align_as(self, other: Tensor) -> Tensor: ...
    @overload
    def align_to(self, names: List[Union[str, None]]) -> Tensor: ...
    @overload
    def align_to(self, order: List[Union[str, None]], ellipsis_idx: _int) -> Tensor: ...
    @overload
    def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
    @overload
    def all(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
    @overload
    def all(self) -> Tensor: ...
    def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
    def angle(self) -> Tensor: ...
    @overload
    def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
    @overload
    def any(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
    @overload
    def any(self) -> Tensor: ...
    def apply_(self, callable: Callable) -> Tensor: ...
    def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
    def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
    @overload
    def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
    @overload
    def argsort(self, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
    def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
    def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
    def asin(self) -> Tensor: ...
    def asin_(self) -> Tensor: ...
    def atan(self) -> Tensor: ...
    def atan2(self, other: Tensor) -> Tensor: ...
    def atan2_(self, other: Tensor) -> Tensor: ...
    def atan_(self) -> Tensor: ...
284
    def backward(self, gradient: Optional[Tensor]=None, retain_graph: _bool=False, create_graph: _bool=False) -> None: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    @overload
    def bernoulli(self, *, generator: Generator=None) -> Tensor: ...
    @overload
    def bernoulli(self, p: _float, *, generator: Generator=None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: Tensor, *, generator: Generator=None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: _float=0.5, *, generator: Generator=None) -> Tensor: ...
    def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
    def bitwise_not(self) -> Tensor: ...
    def bitwise_not_(self) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Tensor) -> Tensor: ...
    def bmm(self, mat2: Tensor) -> Tensor: ...
    def bool(self) -> Tensor: ...
    def byte(self) -> Tensor: ...
    def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Generator=None) -> Tensor: ...
    def ceil(self) -> Tensor: ...
    def ceil_(self) -> Tensor: ...
    def char(self) -> Tensor: ...
    def cholesky(self, upper: _bool=False) -> Tensor: ...
    def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
    def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
    def chunk(self, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
    def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
    def clamp_(self, min: _float=-inf, max: _float=inf) -> Tensor: ...
    def clamp_max(self, max: Number) -> Tensor: ...
    def clamp_max_(self, max: Number) -> Tensor: ...
    def clamp_min(self, min: Number) -> Tensor: ...
    def clamp_min_(self, min: Number) -> Tensor: ...
    def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def coalesce(self) -> Tensor: ...
    def conj(self) -> Tensor: ...
    def contiguous(self) -> Tensor: ...
327
    def copy_(self, other: Tensor) -> None: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
328
329
330
331
332
333
    def cos(self) -> Tensor: ...
    def cos_(self) -> Tensor: ...
    def cosh(self) -> Tensor: ...
    def cosh_(self) -> Tensor: ...
    def cpu(self) -> Tensor: ...
    def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
334
    def cuda(self, device: Union[_device, _int, str, None]=None, non_blocking: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    @overload
    def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumprod(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def dense_dim(self) -> _int: ...
    def dequantize(self) -> Tensor: ...
    def det(self) -> Tensor: ...
    def detach(self) -> Tensor: ...
    def detach_(self) -> Tensor: ...
    def diag(self, diagonal: _int=0) -> Tensor: ...
    def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
    def diagflat(self, offset: _int=0) -> Tensor: ...
    def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
    def digamma(self) -> Tensor: ...
    def digamma_(self) -> Tensor: ...
    def dim(self) -> _int: ...
    def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
356
357
    def div(self, denominator: Number) -> Tensor: ...
    def div_(self, denominator: Number) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def dot(self, tensor: Tensor) -> Tensor: ...
    def double(self) -> Tensor: ...
    def eig(self, eigenvectors: _bool=False) -> Tuple[Tensor, Tensor]: ...
    def element_size(self) -> _int: ...
    @overload
    def eq(self, other: Number) -> Tensor: ...
    @overload
    def eq(self, other: Tensor) -> Tensor: ...
    @overload
    def eq_(self, other: Number) -> Tensor: ...
    @overload
    def eq_(self, other: Tensor) -> Tensor: ...
    def equal(self, other: Tensor) -> _bool: ...
    def erf(self) -> Tensor: ...
    def erf_(self) -> Tensor: ...
    def erfc(self) -> Tensor: ...
    def erfc_(self) -> Tensor: ...
    def erfinv(self) -> Tensor: ...
    def erfinv_(self) -> Tensor: ...
    def exp(self) -> Tensor: ...
    def exp_(self) -> Tensor: ...
    @overload
    def expand(self, size: _size, *, implicit: _bool=False) -> Tensor: ...
    @overload
    def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
    def expand_as(self, other: Tensor) -> Tensor: ...
    def expm1(self) -> Tensor: ...
    def expm1_(self) -> Tensor: ...
    def exponential_(self, lambd: _float=1, *, generator: Generator=None) -> Tensor: ...
    def fft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
    @overload
    def fill_(self, value: Number) -> Tensor: ...
    @overload
    def fill_(self, value: Tensor) -> Tensor: ...
    def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
    @overload
    def flatten(self, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
    @overload
    def flatten(self, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
    @overload
    def flip(self, dims: _size) -> Tensor: ...
    @overload
    def flip(self, *dims: _int) -> Tensor: ...
    def float(self) -> Tensor: ...
    def floor(self) -> Tensor: ...
    def floor_(self) -> Tensor: ...
    @overload
    def fmod(self, other: Number) -> Tensor: ...
    @overload
    def fmod(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod_(self, other: Number) -> Tensor: ...
    @overload
    def fmod_(self, other: Tensor) -> Tensor: ...
    def frac(self) -> Tensor: ...
    def frac_(self) -> Tensor: ...
    @overload
    def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
    @overload
    def gather(self, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
    @overload
    def ge(self, other: Number) -> Tensor: ...
    @overload
    def ge(self, other: Tensor) -> Tensor: ...
    @overload
    def ge_(self, other: Number) -> Tensor: ...
    @overload
    def ge_(self, other: Tensor) -> Tensor: ...
    def geometric_(self, p: _float, *, generator: Generator=None) -> Tensor: ...
    def geqrf(self) -> Tuple[Tensor, Tensor]: ...
    def ger(self, vec2: Tensor) -> Tensor: ...
    def get_device(self) -> _int: ...
    @overload
    def gt(self, other: Number) -> Tensor: ...
    @overload
    def gt(self, other: Tensor) -> Tensor: ...
    @overload
    def gt_(self, other: Number) -> Tensor: ...
    @overload
    def gt_(self, other: Tensor) -> Tensor: ...
    def half(self) -> Tensor: ...
    def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
    def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
    def ifft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
    def imag(self) -> Tensor: ...
    @overload
    def index_add(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_add(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
    def index_add_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
    def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
    def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
    @overload
    def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
    @overload
    def index_select(self, dim: Union[str, None], index: Tensor) -> Tensor: ...
    def indices(self) -> Tensor: ...
    def int(self) -> Tensor: ...
    def int_repr(self) -> Tensor: ...
    def inverse(self) -> Tensor: ...
    def irfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
    def is_coalesced(self) -> _bool: ...
    def is_complex(self) -> _bool: ...
    def is_contiguous(self) -> _bool: ...
    is_cuda: _bool
    def is_distributed(self) -> _bool: ...
    def is_floating_point(self) -> _bool: ...
    is_leaf: _bool
    def is_nonzero(self) -> _bool: ...
    def is_pinned(self) -> _bool: ...
    def is_same_size(self, other: Tensor) -> _bool: ...
    def is_set_to(self, tensor: Tensor) -> _bool: ...
    def is_signed(self) -> _bool: ...
    def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
    def item(self) -> Number: ...
    @overload
    def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def kthvalue(self, k: _int, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def le(self, other: Number) -> Tensor: ...
    @overload
    def le(self, other: Tensor) -> Tensor: ...
    @overload
    def le_(self, other: Number) -> Tensor: ...
    @overload
    def le_(self, other: Tensor) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
    def lgamma(self) -> Tensor: ...
    def lgamma_(self) -> Tensor: ...
    def log(self) -> Tensor: ...
    def log10(self) -> Tensor: ...
    def log10_(self) -> Tensor: ...
    def log1p(self) -> Tensor: ...
    def log1p_(self) -> Tensor: ...
    def log2(self) -> Tensor: ...
    def log2_(self) -> Tensor: ...
    def log_(self) -> Tensor: ...
    def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Generator=None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def logdet(self) -> Tensor: ...
    def logical_not(self) -> Tensor: ...
    def logical_not_(self) -> Tensor: ...
    def logical_xor(self, other: Tensor) -> Tensor: ...
    def logical_xor_(self, other: Tensor) -> Tensor: ...
    @overload
    def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
    @overload
    def logsumexp(self, dim: List[Union[str, None]], keepdim: _bool=False) -> Tensor: ...
    def long(self) -> Tensor: ...
    def lstsq(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
    @overload
    def lt(self, other: Number) -> Tensor: ...
    @overload
    def lt(self, other: Tensor) -> Tensor: ...
    @overload
    def lt_(self, other: Number) -> Tensor: ...
    @overload
    def lt_(self, other: Tensor) -> Tensor: ...
    def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
    def map_(tensor: Tensor, callable: Callable) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
    def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_select(self, mask: Tensor) -> Tensor: ...
    def matmul(self, other: Tensor) -> Tensor: ...
    def matrix_power(self, n: _int) -> Tensor: ...
    @overload
    def max(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def max(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def max(self, other: Tensor) -> Tensor: ...
    @overload
    def max(self) -> Tensor: ...
    @overload
    def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def mean(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def mean(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def median(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def median(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def median(self) -> Tensor: ...
    @overload
    def min(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def min(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def min(self, other: Tensor) -> Tensor: ...
    @overload
    def min(self) -> Tensor: ...
    def mm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def mode(self, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def mode(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
603
    def mul_(self, value: Union[_float, _int, Tensor]): ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Generator=None) -> Tensor: ...
    def mv(self, vec: Tensor) -> Tensor: ...
    def mvlgamma(self, p: _int) -> Tensor: ...
    def mvlgamma_(self, p: _int) -> Tensor: ...
    def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
    def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
    def ndimension(self) -> _int: ...
    @overload
    def ne(self, other: Number) -> Tensor: ...
    @overload
    def ne(self, other: Tensor) -> Tensor: ...
    @overload
    def ne_(self, other: Number) -> Tensor: ...
    @overload
    def ne_(self, other: Tensor) -> Tensor: ...
    def neg(self) -> Tensor: ...
    def neg_(self) -> Tensor: ...
    def nelement(self) -> _int: ...
    @overload
Tom Birch's avatar
Tom Birch committed
623
    def new_empty(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
624
    @overload
Tom Birch's avatar
Tom Birch committed
625
626
627
628
    def new_empty(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
    def new_full(self, size: _size, fill_value: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
    def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
    def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
629
    @overload
Tom Birch's avatar
Tom Birch committed
630
    def new_zeros(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
631
    @overload
Tom Birch's avatar
Tom Birch committed
632
    def new_zeros(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    def normal_(self, mean: _float=0, std: _float=1, *, generator: Generator=None) -> Tensor: ...
    def numel(self) -> _int: ...
    def numpy(self) -> Any: ...
    def orgqr(self, input2: Tensor) -> Tensor: ...
    def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
    @overload
    def permute(self, dims: _size) -> Tensor: ...
    @overload
    def permute(self, *dims: _int) -> Tensor: ...
    def pin_memory(self) -> Tensor: ...
    def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
    def polygamma(self, n: _int) -> Tensor: ...
    def polygamma_(self, n: _int) -> Tensor: ...
    @overload
    def pow(self, exponent: Number) -> Tensor: ...
    @overload
    def pow(self, exponent: Tensor) -> Tensor: ...
    @overload
    def pow_(self, exponent: Number) -> Tensor: ...
    @overload
    def pow_(self, exponent: Tensor) -> Tensor: ...
    def prelu(self, weight: Tensor) -> Tensor: ...
    @overload
    def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def prod(self, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
    def q_per_channel_axis(self) -> _int: ...
    def q_per_channel_scales(self) -> Tensor: ...
    def q_per_channel_zero_points(self) -> Tensor: ...
    def q_scale(self) -> _float: ...
    def q_zero_point(self) -> _int: ...
    def qr(self, some: _bool=True) -> Tuple[Tensor, Tensor]: ...
    def qscheme(self) -> _qscheme: ...
    @overload
    def random_(self, from_: _int, to: _int, *, generator: Generator=None) -> Tensor: ...
    @overload
    def random_(self, to: _int, *, generator: Generator=None) -> Tensor: ...
    @overload
    def random_(self, *, generator: Generator=None) -> Tensor: ...
    def real(self) -> Tensor: ...
    def reciprocal(self) -> Tensor: ...
    def reciprocal_(self) -> Tensor: ...
    def refine_names(self, names: List[Union[str, None]]) -> Tensor: ...
    def relu(self) -> Tensor: ...
    def relu_(self) -> Tensor: ...
    @overload
    def remainder(self, other: Number) -> Tensor: ...
    @overload
    def remainder(self, other: Tensor) -> Tensor: ...
    @overload
    def remainder_(self, other: Number) -> Tensor: ...
    @overload
    def remainder_(self, other: Tensor) -> Tensor: ...
    def rename(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
    def rename_(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
    def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
    def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
    @overload
    def repeat(self, repeats: _size) -> Tensor: ...
    @overload
    def repeat(self, *repeats: _int) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
    def requires_grad_(self, mode: _bool=True) -> Tensor: ...
    @overload
    def reshape(self, shape: _size) -> Tensor: ...
    @overload
    def reshape(self, *shape: _int) -> Tensor: ...
    def reshape_as(self, other: Tensor) -> Tensor: ...
    @overload
    def resize_(self, size: _size, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    @overload
    def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def rfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
    def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
    def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
    def round(self) -> Tensor: ...
    def round_(self) -> Tensor: ...
    def rsqrt(self) -> Tensor: ...
    def rsqrt_(self) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_add(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
    def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def select(self, dim: Union[str, None], index: _int) -> Tensor: ...
    @overload
    def select(self, dim: _int, index: _int) -> Tensor: ...
    @overload
    def set_(self, source: Storage) -> Tensor: ...
    @overload
    def set_(self, source: Storage, storage_offset: _int, size: _size, stride: _size=()) -> Tensor: ...
    @overload
    def set_(self, source: Tensor) -> Tensor: ...
    @overload
    def set_(self) -> Tensor: ...
    def short(self) -> Tensor: ...
    def sigmoid(self) -> Tensor: ...
    def sigmoid_(self) -> Tensor: ...
    def sign(self) -> Tensor: ...
    def sign_(self) -> Tensor: ...
    def sin(self) -> Tensor: ...
    def sin_(self) -> Tensor: ...
    def sinh(self) -> Tensor: ...
    def sinh_(self) -> Tensor: ...
    @overload
    def size(self) -> Size: ...
    @overload
    def size(self, _int) -> _int: ...
    def slogdet(self) -> Tuple[Tensor, Tensor]: ...
    def smm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def solve(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
    @overload
    def sort(self, dim: _int=-1, descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
    @overload
    def sort(self, dim: Union[str, None], descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
    def sparse_dim(self) -> _int: ...
    def sparse_mask(self, mask: Tensor) -> Tensor: ...
    def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
    def sqrt(self) -> Tensor: ...
    def sqrt_(self) -> Tensor: ...
    @overload
    def squeeze(self) -> Tensor: ...
    @overload
    def squeeze(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze(self, dim: Union[str, None]) -> Tensor: ...
    @overload
    def squeeze_(self) -> Tensor: ...
    @overload
    def squeeze_(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze_(self, dim: Union[str, None]) -> Tensor: ...
    def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    @overload
    def std(self, unbiased: _bool=True) -> Tensor: ...
    @overload
    def std(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def std(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    def storage(self) -> Storage: ...
    def storage_offset(self) -> _int: ...
    @overload
    def stride(self) -> Tuple[_int]: ...
    @overload
    def stride(self, _int) -> _int: ...
    @overload
    def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum_to_size(self, size: _size) -> Tensor: ...
    @overload
    def sum_to_size(self, *size: _int) -> Tensor: ...
    def svd(self, some: _bool=True, compute_uv: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
    def symeig(self, eigenvectors: _bool=False, upper: _bool=True) -> Tuple[Tensor, Tensor]: ...
    def t(self) -> Tensor: ...
    def t_(self) -> Tensor: ...
    def take(self, index: Tensor) -> Tensor: ...
    def tan(self) -> Tensor: ...
    def tan_(self) -> Tensor: ...
    def tanh(self) -> Tensor: ...
    def tanh_(self) -> Tensor: ...
    @overload
    def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
    @overload
Tom Birch's avatar
Tom Birch committed
826
    def to(self, device: Union[_device, _int, str, None]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
    @overload
    def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
    def to_dense(self) -> Tensor: ...
    def to_mkldnn(self) -> Tensor: ...
    @overload
    def to_sparse(self, sparse_dim: _int) -> Tensor: ...
    @overload
    def to_sparse(self) -> Tensor: ...
    def tolist(self) -> List: ...
    def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> Tuple[Tensor, Tensor]: ...
    def trace(self) -> Tensor: ...
    @overload
    def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
    @overload
    def transpose(self, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
    def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
    def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> Tuple[Tensor, Tensor]: ...
    def tril(self, diagonal: _int=0) -> Tensor: ...
    def tril_(self, diagonal: _int=0) -> Tensor: ...
    def triu(self, diagonal: _int=0) -> Tensor: ...
    def triu_(self, diagonal: _int=0) -> Tensor: ...
    def trunc(self) -> Tensor: ...
    def trunc_(self) -> Tensor: ...
    def type(self, dtype: Union[None, str, _dtype]=None, non_blocking: _bool=False) -> Union[str, Tensor]: ...
    def type_as(self, other: Tensor) -> Tensor: ...
    @overload
    def unbind(self, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
    @overload
    def unbind(self, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
    @overload
    def unflatten(self, dim: Union[str, None], sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
    @overload
    def unflatten(self, dim: _int, sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
    def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
    def uniform_(self, from_: _float=0, to: _float=1, *, generator: Generator=None) -> Tensor: ...
    def unsqueeze(self, dim: _int) -> Tensor: ...
    def unsqueeze_(self, dim: _int) -> Tensor: ...
    def values(self) -> Tensor: ...
    @overload
    def var(self, unbiased: _bool=True) -> Tensor: ...
    @overload
    def var(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def var(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def view(self, size: _size) -> Tensor: ...
    @overload
    def view(self, *size: _int) -> Tensor: ...
    def view_as(self, other: Tensor) -> Tensor: ...
    def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
    def zero_(self) -> Tensor: ...
    @overload
    def zeros_like_(self, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like__(self, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like__(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like__(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like__(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like___(self, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like___(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like___(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like___(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like____(self, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like____(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    @overload
    def zeros_like____(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def zeros_like____(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # Manually defined methods from torch/tensor.py
    def __len__(self) -> _int: ...
    def __iter__(self) -> Iterator[Tensor]: ...
    def __contains__(self, item: Union[Tensor, Number]) -> _bool: ...
    def register_hook(self, hook: Callable) -> Any: ...
    def retain_grad(self) -> None: ...
    def is_shared(self) -> _bool: ...
    def share_memory_(self) -> None: ...
    # TODO: fill in the types for these, or otherwise figure out some
    # way to not have to write these out again...
    def nonzero(self, *, as_tuple=True): ...
    def norm(self, p="fro", dim=None, keepdim=False): ...
    def stft(self, n_fft, hop_length=None, win_length=None, window=None,
             center=True, pad_mode='reflect', normalized=False, onesided=True): ...
Tom Birch's avatar
Tom Birch committed
925
    def split(self, split_size, dim=0) -> Tuple[Tensor, ...]: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    def unique(self, sorted=True, return_inverse=False, dim=None): ...
    def unique_consecutive(self, sorted=True, return_inverse=False, return_counts=False, dim=None): ...
    def lu(self, pivot=True, get_infos=False): ...

#MODIFIED BY TORCHGPIPE
    from .cuda import Stream
    def record_stream(self, stream: Optional[Stream]) -> None: ...
#END

@overload
def __and__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __and__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Tensor) -> Tensor: ...
def _adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def _addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
def _addr_(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _baddbmm_mkl_(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _batch_norm_impl_index(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, _int]: ...
def _cast_Byte(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Char(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Double(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Float(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Half(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Int(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Long(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Short(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int, benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool) -> Tensor: ...
def _convolution_nogroup(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size) -> Tensor: ...
def _copy_from(self: Tensor, dst: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int=0, zero_infinity: _bool=False) -> Tuple[Tensor, Tensor]: ...
def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ...
Tom Birch's avatar
Tom Birch committed
974
def _cudnn_init_dropout_state(dropout: _float, train: _bool, dropout_seed: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
975
976
977
978
979
980
981
982
983
984
985
def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: _int, mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, bidirectional: _bool) -> Tensor: ...
def _cufft_clear_plan_cache(device_index: _int) -> None: ...
def _cufft_get_plan_cache_max_size(device_index: _int) -> _int: ...
def _cufft_get_plan_cache_size(device_index: _int) -> _int: ...
def _cufft_set_plan_cache_max_size(device_index: _int, max_size: _int) -> None: ...
def _debug_has_internal_overlap(self: Tensor) -> _int: ...
def _dim_arange(like: Tensor, dim: _int) -> Tensor: ...
def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor) -> Tensor: ...
def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
@overload
Tom Birch's avatar
Tom Birch committed
986
def _empty_affine_quantized(size: _size, *, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
987
@overload
Tom Birch's avatar
Tom Birch committed
988
def _empty_affine_quantized(*size: _int, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
989
@overload
Tom Birch's avatar
Tom Birch committed
990
def _empty_per_channel_affine_quantized(size: _size, *, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
991
@overload
Tom Birch's avatar
Tom Birch committed
992
def _empty_per_channel_affine_quantized(*size: _int, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
def _fft_with_size(self: Tensor, signal_ndim: _int, complex_input: _bool, complex_output: _bool, inverse: _bool, checked_signal_sizes: _size, normalized: _bool, onesided: _bool, output_sizes: _size) -> Tensor: ...
def _fused_dropout(self: Tensor, p: _float, generator: Generator=None) -> Tuple[Tensor, Tensor]: ...
def _has_compatible_shallow_copy_type(self: Tensor, from_: Tensor) -> _bool: ...
def _index_copy_(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
def _index_put_impl_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False, unsafe: _bool=False) -> Tensor: ...
def _log_softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _lu_solve_helper(self: Tensor, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
def _lu_with_info(self: Tensor, pivot: _bool=True, check_errors: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
def _make_per_channel_quantized_tensor(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int) -> Tensor: ...
def _make_per_tensor_quantized_tensor(self: Tensor, scale: _float, zero_point: _int) -> Tensor: ...
def _masked_scale(self: Tensor, mask: Tensor, scale: _float) -> Tensor: ...
def _max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _mkldnn_reshape(self: Tensor, shape: _size) -> Tensor: ...
def _mkldnn_transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
def _mkldnn_transpose_(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
def _mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _multinomial_alias_draw(J: Tensor, q: Tensor, num_samples: _int, *, generator: Generator=None) -> Tensor: ...
def _multinomial_alias_setup(probs: Tensor) -> Tuple[Tensor, Tensor]: ...
def _nnpack_available() -> _bool: ...
def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[_int, _size], stride: Union[_int, _size]=1) -> Tensor: ...
def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: _bool, padding_value: Number, total_length: _int) -> Tuple[Tensor, Tensor]: ...
def _reshape_from_tensor(self: Tensor, shape: Tensor) -> Tensor: ...
def _s_where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
def _sample_dirichlet(self: Tensor, generator: Generator=None) -> Tensor: ...
def _shape_as_tensor(self: Tensor) -> Tensor: ...
def _sobol_engine_draw(quasi: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int, dtype: Optional[_dtype]) -> Tuple[Tensor, Tensor]: ...
def _sobol_engine_ff_(self: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int) -> Tensor: ...
def _sobol_engine_initialize_state_(self: Tensor, dimension: _int) -> Tensor: ...
def _sobol_engine_scramble_(self: Tensor, ltm: Tensor, dimension: _int) -> Tensor: ...
def _softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _sparse_addmm(self: Tensor, sparse: Tensor, dense: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _sparse_mm(sparse: Tensor, dense: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, *, dtype: _dtype) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size]) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
def _standard_gamma(self: Tensor, generator: Generator=None) -> Tensor: ...
def _standard_gamma_grad(self: Tensor, output: Tensor) -> Tensor: ...
def _std(self: Tensor, unbiased: _bool=True) -> Tensor: ...
def _test_optional_float(self: Tensor, *, scale: Optional[_float]=None) -> Tensor: ...
def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int=1) -> Tensor: ...
def _unique(self: Tensor, sorted: _bool=True, return_inverse: _bool=False) -> Tuple[Tensor, Tensor]: ...
def _unique2(self: Tensor, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int) -> _bool: ...
def _var(self: Tensor, unbiased: _bool=True) -> Tensor: ...
def _weight_norm(v: Tensor, g: Tensor, dim: _int=0) -> Tensor: ...
def _weight_norm_cuda_interface(v: Tensor, g: Tensor, dim: _int=0) -> Tuple[Tensor, Tensor]: ...
def abs(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def abs_(self: Tensor) -> Tensor: ...
def acos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def acos_(self: Tensor) -> Tensor: ...
def adaptive_avg_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def adaptive_max_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
@overload
def add(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
def addmv_(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
def affine_grid_generator(theta: Tensor, size: _size, align_corners: _bool) -> Tensor: ...
@overload
def all(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def all(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def all(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def allclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
def alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def angle(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1133
def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1134
@overload
Tom Birch's avatar
Tom Birch committed
1135
def arange(start: Number, end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1136
@overload
Tom Birch's avatar
Tom Birch committed
1137
def arange(end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
def argmax(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
def argmin(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
@overload
def argsort(self: Tensor, dim: _int=-1, descending: _bool=False) -> Tensor: ...
@overload
def argsort(self: Tensor, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
def as_strided(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_tensor(data: Any, dtype: _dtype=None, device: Optional[_device]=None) -> Tensor: ...
def asin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def asin_(self: Tensor) -> Tensor: ...
def atan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan2(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan_(self: Tensor) -> Tensor: ...
def avg_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, ceil_mode: _bool=False, count_include_pad: _bool=True) -> Tensor: ...
@overload
def baddbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1164
def bartlett_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1165
@overload
Tom Birch's avatar
Tom Birch committed
1166
def bartlett_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
def batch_norm_backward_elemt(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], mean_dy: Tensor, mean_dy_xmu: Tensor) -> Tensor: ...
def batch_norm_backward_reduce(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], input_g: _bool, weight_g: _bool, bias_g: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def batch_norm_elemt(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, invstd: Tensor, eps: _float, *, out: Optional[Tensor]=None) -> Tensor: ...
def batch_norm_gather_stats(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, count: _int) -> Tuple[Tensor, Tensor]: ...
def batch_norm_gather_stats_with_counts(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, counts: _size) -> Tuple[Tensor, Tensor]: ...
def batch_norm_stats(input: Tensor, eps: _float) -> Tuple[Tensor, Tensor]: ...
def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ...
@overload
def bernoulli(self: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bernoulli(self: Tensor, p: _float, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
def bincount(self: Tensor, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
def bitwise_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bitwise_xor(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bitwise_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1187
def blackman_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1188
@overload
Tom Birch's avatar
Tom Birch committed
1189
def blackman_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
def bmm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def can_cast(from_: _dtype, to: _dtype) -> _bool: ...
@overload
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, None], *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil_(self: Tensor) -> Tensor: ...
def celu(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def celu_(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def cholesky(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def cholesky_inverse(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def cholesky_solve(self: Tensor, input2: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def chunk(self: Tensor, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max(self: Tensor, max: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max_(self: Tensor, max: Number) -> Tensor: ...
def clamp_min(self: Tensor, min: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_min_(self: Tensor, min: Number) -> Tensor: ...
def clone(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def combinations(self: Tensor, r: _int=2, with_replacement: _bool=False) -> Tensor: ...
def conj(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def constant_pad_nd(self: Tensor, pad: _size, value: Number=0) -> Tensor: ...
def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv_tbc(self: Tensor, weight: Tensor, bias: Tensor, pad: _int=0) -> Tensor: ...
def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int) -> Tensor: ...
def cos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cos_(self: Tensor) -> Tensor: ...
def cosh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cosh_(self: Tensor) -> Tensor: ...
def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int=1, eps: _float=1e-08) -> Tensor: ...
def cross(self: Tensor, other: Tensor, dim: Optional[_int]=None, *, out: Optional[Tensor]=None) -> Tensor: ...
def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ...
def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def cudnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def cudnn_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def cudnn_grid_sampler(self: Tensor, grid: Tensor) -> Tensor: ...
def cudnn_is_acceptable(self: Tensor) -> _bool: ...
@overload
def cumprod(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumprod(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def dequantize(self: Tensor) -> Tensor: ...
def det(self: Tensor) -> Tensor: ...
def detach(self: Tensor) -> Tensor: ...
def detach_(self: Tensor) -> Tensor: ...
def diag(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def diag_embed(self: Tensor, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self: Tensor, offset: _int=0) -> Tensor: ...
def diagonal(self: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def digamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dist(self: Tensor, other: Tensor, p: Number=2) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def dot(self: Tensor, tensor: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def eig(self: Tensor, eigenvectors: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def embedding(weight: Tensor, indices: Tensor, padding_idx: _int=-1, scale_grad_by_freq: _bool=False, sparse: _bool=False) -> Tensor: ...
def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def embedding_renorm_(self: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1263
def empty(size: _size, *, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int , str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1264
@overload
Tom Birch's avatar
Tom Birch committed
1265
def empty(*size: _int, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1266
@overload
Tom Birch's avatar
Tom Birch committed
1267
def empty(size: _size, *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1268
@overload
Tom Birch's avatar
Tom Birch committed
1269
def empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1270
1271
1272
@overload
def empty_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1273
1274
def empty_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def empty_strided(size: _size, stride: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
@overload
def eq(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def eq(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def equal(self: Tensor, other: Tensor) -> _bool: ...
def erf(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erf_(self: Tensor) -> Tensor: ...
def erfc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erfc_(self: Tensor) -> Tensor: ...
def erfinv(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp_(self: Tensor) -> Tensor: ...
def expm1(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def expm1_(self: Tensor) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1290
def eye(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1291
@overload
Tom Birch's avatar
Tom Birch committed
1292
def eye(n: _int, m: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
def fake_quantize_per_channel_affine(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
def fake_quantize_per_tensor_affine(self: Tensor, scale: _float, zero_point: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
def fbgemm_linear_fp16_weight(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
def fbgemm_linear_fp16_weight_fp32_activation(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
def fbgemm_linear_int8_weight_fp32_activation(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ...
def fbgemm_pack_gemm_matrix_fp16(input: Tensor) -> Tensor: ...
@overload
def fbgemm_pack_quantized_matrix(input: Tensor) -> Tensor: ...
@overload
def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ...
def feature_alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def fft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Number) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Tensor) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self: Tensor, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
def flip(self: Tensor, dims: _size) -> Tensor: ...
def floor(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def floor_(self: Tensor) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def frac(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def frac_(self: Tensor) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1335
def from_file(filename: str, shared: Optional[_bool]=None, size: Optional[_int]=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1336
1337
def from_numpy(ndarray) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1338
def full(size: _size, fill_value: Number, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1339
@overload
Tom Birch's avatar
Tom Birch committed
1340
def full(size: _size, fill_value: Number, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1341
1342
1343
@overload
def full_like(self: Tensor, fill_value: Number, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1344
def full_like(self: Tensor, fill_value: Number, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
@overload
def gather(self: Tensor, dim: _int, index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def gather(self: Tensor, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def geqrf(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def ger(self: Tensor, vec2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def get_default_dtype() -> _dtype: ...
def get_num_interop_threads() -> _int: ...
def get_num_threads() -> _int: ...
def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enabled: _bool=True) -> Tensor: ...
@overload
def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1372
def hamming_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1373
@overload
Tom Birch's avatar
Tom Birch committed
1374
def hamming_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1375
@overload
Tom Birch's avatar
Tom Birch committed
1376
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1377
@overload
Tom Birch's avatar
Tom Birch committed
1378
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, beta: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1379
@overload
Tom Birch's avatar
Tom Birch committed
1380
def hann_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1381
@overload
Tom Birch's avatar
Tom Birch committed
1382
def hann_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
def hardshrink(self: Tensor, lambd: Number=0.5) -> Tensor: ...
def histc(self: Tensor, bins: _int=100, min: Number=0, max: Number=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ifft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
def imag(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def index_add(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_add(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
def index_put(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
def index_put_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
@overload
def index_select(self: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def index_select(self: Tensor, dim: Union[str, None], index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
def int_repr(self: Tensor) -> Tensor: ...
def inverse(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def irfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
def is_complex(self: Tensor) -> _bool: ...
def is_distributed(self: Tensor) -> _bool: ...
def is_floating_point(self: Tensor) -> _bool: ...
def is_nonzero(self: Tensor) -> _bool: ...
def is_same_size(self: Tensor, other: Tensor) -> _bool: ...
def is_signed(self: Tensor) -> _bool: ...
def isclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
def isfinite(self: Tensor) -> Tensor: ...
def isnan(self: Tensor) -> Tensor: ...
@overload
def kthvalue(self: Tensor, k: _int, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def kthvalue(self: Tensor, k: _int, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def layer_norm(input: Tensor, normalized_shape: _size, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enable: _bool=True) -> Tensor: ...
@overload
def le(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def le(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lerp(self: Tensor, end: Tensor, weight: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lerp(self: Tensor, end: Tensor, weight: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def lgamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1437
def linspace(start: Number, end: Number, steps: _int=100, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
def log(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10_(self: Tensor) -> Tensor: ...
def log1p(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log1p_(self: Tensor) -> Tensor: ...
def log2(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log2_(self: Tensor) -> Tensor: ...
def log_(self: Tensor) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def logdet(self: Tensor) -> Tensor: ...
def logical_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def logical_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1453
def logspace(start: Number, end: Number, steps: _int=100, base: _float=10.0, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
@overload
def logsumexp(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def logsumexp(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
@overload
def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def lstsq(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def lt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def lu_solve(self: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def masked_fill(self: Tensor, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill(self: Tensor, mask: Tensor, value: Tensor) -> Tensor: ...
def masked_scatter(self: Tensor, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_select(self: Tensor, mask: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matmul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matrix_power(self: Tensor, n: _int) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, tol: _float, symmetric: _bool=False) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, symmetric: _bool=False) -> Tensor: ...
@overload
def max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def max(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def max_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def max_pool1d_with_indices(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tuple[Tensor, Tensor]: ...
def max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def max_pool3d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
@overload
def mean(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def median(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def miopen_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_depthwise_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
def mkldnn_adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def mkldnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int) -> Tensor: ...
def mkldnn_convolution_backward_weights(weight_size: _size, grad_output: Tensor, self: Tensor, padding: _size, stride: _size, dilation: _size, groups: _int, bias_defined: _bool) -> Tuple[Tensor, Tensor]: ...
def mkldnn_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def mm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def mode(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def mul(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mul(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def multinomial(self: Tensor, num_samples: _int, replacement: _bool=False, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def mv(self: Tensor, vec: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def mvlgamma(self: Tensor, p: _int) -> Tensor: ...
def narrow(self: Tensor, dim: _int, start: _int, length: _int) -> Tensor: ...
def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def native_layer_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], M: _int, N: _int, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def native_norm(self: Tensor, p: Number=2) -> Tensor: ...
@overload
def ne(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ne(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def neg(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def neg_(self: Tensor) -> Tensor: ...
def norm_except_dim(v: Tensor, pow: _int=2, dim: _int=0) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float=1, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1552
def normal(mean: _float, std: _float, size: _size, *, generator: Generator=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1553
1554
1555
1556
1557
1558
@overload
def nuclear_norm(self: Tensor, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def nuclear_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def numel(self: Tensor) -> _int: ...
@overload
Tom Birch's avatar
Tom Birch committed
1559
def ones(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1560
@overload
Tom Birch's avatar
Tom Birch committed
1561
def ones(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1562
@overload
Tom Birch's avatar
Tom Birch committed
1563
def ones(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1564
@overload
Tom Birch's avatar
Tom Birch committed
1565
def ones(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1566
1567
1568
@overload
def ones_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1569
def ones_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
def orgqr(self: Tensor, input2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ormqr(self: Tensor, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def pairwise_distance(x1: Tensor, x2: Tensor, p: _float=2, eps: _float=1e-06, keepdim: _bool=False) -> Tensor: ...
def pdist(self: Tensor, p: _float=2) -> Tensor: ...
def pinverse(self: Tensor, rcond: _float=1e-15) -> Tensor: ...
def pixel_shuffle(self: Tensor, upscale_factor: _int) -> Tensor: ...
def poisson(self: Tensor, generator: Generator=None) -> Tensor: ...
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: _bool, full: _bool, eps: _float, reduction: _int) -> Tensor: ...
def polygamma(n: _int, self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Number, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def prelu(self: Tensor, weight: Tensor) -> Tensor: ...
@overload
def prod(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def promote_types(type1: _dtype, type2: _dtype) -> _dtype: ...
def q_per_channel_axis(self: Tensor) -> _int: ...
def q_per_channel_scales(self: Tensor) -> Tensor: ...
def q_per_channel_zero_points(self: Tensor) -> Tensor: ...
def q_scale(self: Tensor) -> _float: ...
def q_zero_point(self: Tensor) -> _int: ...
def qr(self: Tensor, some: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def quantize_per_channel(self: Tensor, scales: Tensor, zero_points: Tensor, axis: _int, dtype: _dtype) -> Tensor: ...
def quantize_per_tensor(self: Tensor, scale: _float, zero_point: _int, dtype: _dtype) -> Tensor: ...
@overload
def quantized_gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def quantized_gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
@overload
def quantized_lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
@overload
def quantized_lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tuple[Tensor, Tensor]: ...
def quantized_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1615
def rand(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1616
@overload
Tom Birch's avatar
Tom Birch committed
1617
def rand(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1618
@overload
Tom Birch's avatar
Tom Birch committed
1619
def rand(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1620
@overload
Tom Birch's avatar
Tom Birch committed
1621
def rand(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1622
@overload
Tom Birch's avatar
Tom Birch committed
1623
def rand(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1624
@overload
Tom Birch's avatar
Tom Birch committed
1625
def rand(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1626
@overload
Tom Birch's avatar
Tom Birch committed
1627
def rand(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1628
@overload
Tom Birch's avatar
Tom Birch committed
1629
def rand(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1630
1631
1632
@overload
def rand_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1633
def rand_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1634
@overload
Tom Birch's avatar
Tom Birch committed
1635
def randint(low: _int, high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1636
@overload
Tom Birch's avatar
Tom Birch committed
1637
def randint(high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1638
1639
1640
1641
1642
@overload
def randint_like(self: Tensor, high: _int, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def randint_like(self: Tensor, low: _int, high: _int, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1643
def randint_like(self: Tensor, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1644
@overload
Tom Birch's avatar
Tom Birch committed
1645
def randint_like(self: Tensor, low: _int, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1646
@overload
Tom Birch's avatar
Tom Birch committed
1647
def randn(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1648
@overload
Tom Birch's avatar
Tom Birch committed
1649
def randn(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1650
@overload
Tom Birch's avatar
Tom Birch committed
1651
def randn(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1652
@overload
Tom Birch's avatar
Tom Birch committed
1653
def randn(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1654
@overload
Tom Birch's avatar
Tom Birch committed
1655
def randn(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1656
@overload
Tom Birch's avatar
Tom Birch committed
1657
def randn(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1658
@overload
Tom Birch's avatar
Tom Birch committed
1659
def randn(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1660
@overload
Tom Birch's avatar
Tom Birch committed
1661
def randn(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1662
1663
1664
@overload
def randn_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1665
def randn_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1666
@overload
Tom Birch's avatar
Tom Birch committed
1667
def randperm(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1668
@overload
Tom Birch's avatar
Tom Birch committed
1669
1670
def randperm(n: _int, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def range(start: Number, end: Number, step: Number=1, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
def real(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def reciprocal(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def reciprocal_(self: Tensor) -> Tensor: ...
def relu(self: Tensor) -> Tensor: ...
def relu_(self: Tensor) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def renorm(self: Tensor, p: Number, dim: _int, maxnorm: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def repeat_interleave(repeats: Tensor) -> Tensor: ...
@overload
def repeat_interleave(self: Tensor, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
@overload
def repeat_interleave(self: Tensor, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
def reshape(self: Tensor, shape: _size) -> Tensor: ...
def resize_as_(self: Tensor, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def result_type(tensor: Tensor, other: Tensor) -> _dtype: ...
@overload
def result_type(tensor: Tensor, other: Number) -> _dtype: ...
@overload
def result_type(scalar: Number, tensor: Tensor) -> _dtype: ...
@overload
def result_type(scalar1: Number, scalar2: Number) -> _dtype: ...
def rfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
@overload
def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
def roll(self: Tensor, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self: Tensor, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
def round(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def round_(self: Tensor) -> Tensor: ...
def rrelu(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
def rrelu_(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
def rsqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def rsqrt_(self: Tensor) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Number, alpha: Number=1) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1720
def scalar_tensor(s: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
@overload
def scatter(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_add(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_add(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def select(self: Tensor, dim: Union[str, None], index: _int) -> Tensor: ...
@overload
def select(self: Tensor, dim: _int, index: _int) -> Tensor: ...
def selu(self: Tensor) -> Tensor: ...
def selu_(self: Tensor) -> Tensor: ...
def set_flush_denormal(mode: _bool) -> _bool: ...
def set_num_interop_threads(num: _int) -> None: ...
def set_num_threads(num: _int) -> None: ...
def sigmoid(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sigmoid_(self: Tensor) -> Tensor: ...
def sign(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin_(self: Tensor) -> Tensor: ...
def sinh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sinh_(self: Tensor) -> Tensor: ...
def slogdet(self: Tensor) -> Tuple[Tensor, Tensor]: ...
def smm(self: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def solve(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self: Tensor, dim: _int=-1, descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self: Tensor, dim: Union[str, None], descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
Tom Birch's avatar
Tom Birch committed
1760
def sparse_coo_tensor(indices: Tensor, values: Union[Tensor,List], size: Optional[_size]=None, *, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
def split_with_sizes(self: Tensor, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def sqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sqrt_(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def squeeze(self: Tensor, dim: Union[str, None]) -> Tensor: ...
@overload
def sspaddmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
@overload
def std_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def std_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def sub(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def sum(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def svd(self: Tensor, some: _bool=True, compute_uv: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
def symeig(self: Tensor, eigenvectors: _bool=False, upper: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def t(self: Tensor) -> Tensor: ...
def take(self: Tensor, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan_(self: Tensor) -> Tensor: ...
def tanh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tanh_(self: Tensor) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1811
def tensor(data: Any, dtype: Optional[_dtype]=None, device: Union[_device, _int, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
def threshold(self: Tensor, threshold: Number, value: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def threshold_(self: Tensor, threshold: Number, value: Number) -> Tensor: ...
def topk(self: Tensor, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def trace(self: Tensor) -> Tensor: ...
@overload
def transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
@overload
def transpose(self: Tensor, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
@overload
def trapz(y: Tensor, x: Tensor, *, dim: _int=-1) -> Tensor: ...
@overload
def trapz(y: Tensor, *, dx: _float=1, dim: _int=-1) -> Tensor: ...
def triangular_solve(self: Tensor, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def tril(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1826
def tril_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1827
def triu(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
Tom Birch's avatar
Tom Birch committed
1828
def triu_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
def trunc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def trunc_(self: Tensor) -> Tensor: ...
@overload
def unbind(self: Tensor, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
@overload
def unbind(self: Tensor, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def unique_dim(self: Tensor, dim: _int, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def unsqueeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def var(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
@overload
def var_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def var_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
@overload
def where(condition: Tensor) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def zero_(self: Tensor) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1855
def zeros(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1856
@overload
Tom Birch's avatar
Tom Birch committed
1857
def zeros(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1858
@overload
Tom Birch's avatar
Tom Birch committed
1859
def zeros(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1860
@overload
Tom Birch's avatar
Tom Birch committed
1861
def zeros(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1862
1863
1864
@overload
def zeros_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
Tom Birch's avatar
Tom Birch committed
1865
def zeros_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, _int, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

class DoubleStorage(Storage): ...
class FloatStorage(Storage): ...
class LongStorage(Storage): ...
class IntStorage(Storage): ...
class ShortStorage(Storage): ...
class CharStorage(Storage): ...
class ByteStorage(Storage): ...
class BoolStorage(Storage): ...
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...

float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
complex128: dtype = ...
quint8: dtype = ...
qint8: dtype = ...
qint32: dtype = ...
bool: dtype = ...

# Pure Python functions defined in torch/__init__.py

def typename(obj) -> str: ...
def is_tensor(obj) -> _bool: ...
def is_storage(obj) -> _bool: ...
def set_default_tensor_type(type) -> None: ...  # ick, what a bad legacy API
def set_default_dtype(d : _dtype) -> None: ...
def manager_path() -> str: ...
def compiled_with_cxx11_abi() -> _bool: ...

# The return value of this function depends on the value of `as_tuple`,
# (similar to `unique`, `lu`, etc.); as such, it is not
# possible to type correctly
def nonzero(input: Tensor, *, out: Optional[Tensor]=None, as_tuple: Optional[_bool]=None): ...

#MODIFIED BY TORCHGPIPE
def is_grad_enabled() -> _bool: ...
__version__: str = ...
#END