mnist_test_oss.py 4.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py
from __future__ import print_function

import argparse
import time

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms

from fairscale.nn.data_parallel import ShardedDataParallel

WORLD_SIZE = 2
OPTIM = torch.optim.RMSprop
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO


def dist_init(rank, world_size, backend):
    print(f"Using backend: {backend}")
    dist.init_process_group(backend=backend, init_method="tcp://localhost:29501", rank=rank, world_size=world_size)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(rank, args, model, device, train_loader, num_epochs):
    ##############
    # SETUP
    dist_init(rank, WORLD_SIZE, BACKEND)
    ddp = ShardedDataParallel(
        module=model,
        optimizer=torch.optim.Adadelta,
        optimizer_params={"lr": 1e-4},
        world_size=WORLD_SIZE,
        broadcast_buffers=True,
    )

    ddp.train()
    optimizer = ddp.optimizer
    # Reset the memory use counter
    torch.cuda.reset_peak_memory_stats(rank)

    # Training loop
    torch.cuda.synchronize(rank)
    training_start = time.monotonic()

    loss_fn = nn.CrossEntropyLoss()
    ##############

    model.train()
    measurements = []
    for epoch in range(num_epochs):
        epoch_start = time.monotonic()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)

            def closure():
                model.zero_grad()
                outputs = model(data)
                loss = loss_fn(outputs, target)
                loss.backward()
                ddp.reduce()  # Send the gradients to the appropriate shards
                return loss

            optimizer.step(closure)

        epoch_end = time.monotonic()

    torch.cuda.synchronize(rank)
    training_stop = time.monotonic()
    print("Total Time:", training_stop - training_start)


def main():
    # Training settings
    parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
    parser.add_argument(
        "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
    )
    parser.add_argument(
        "--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)"
    )
    parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
    parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
    parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
    parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training")
    parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
    parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
    parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")
    kwargs = {"batch_size": args.batch_size}
    if use_cuda:
        kwargs.update({"num_workers": 1, "pin_memory": True, "shuffle": True},)

    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1, **kwargs)

    model = Net().to(device)

    mp.spawn(
        train, args=(args, model, device, train_loader, args.epochs), nprocs=WORLD_SIZE, join=True,
    )


if __name__ == "__main__":
    main()