lm_wikitext2.py 1.35 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import torch.nn as nn

from fairscale.optim import GradScaler


anj-s's avatar
anj-s committed
8
def get_model_config():
9
10
11
12
13
14
15
16
17
    return {
        "vocab_size": 10000,
        "ninp": 2048,  # embedding dimension
        "nhid": 2048,  # the dimension of the feedforward network model in nn.TransformerEncoder
        "nhead": 32,  # the number of heads in the multiheadattention models
        "dropout": 0,
        "initrange": 0.1,
        "scaler": GradScaler(),
        "clip_value": 0.05,
18
        "num_decoder_layers": 10,
19
        "seq_len": 32,
20
21
22
    }


anj-s's avatar
anj-s committed
23
24
25
26
27
28
29
30
31
32
def get_benchmark_config():

    return {
        "epochs": 1,
        "lr": 0.001,  # learning rate
        "batch_size": 8,
        "criterion": nn.CrossEntropyLoss(),
    }


33
34
35
36
37
38
39
40
41
42
43
44
45
def get_golden_real_stats(multiprocess=False):
    if not multiprocess:
        return {
            "avg_wps": 703.778,
            "std_dev_wps": 5.732,
            "peak_mem_usage": [2320996352, 1396742144, 1396742144, 2340010496],
        }
    else:
        return {
            "avg_wps": 647.404,
            "std_dev_wps": 14.51,
            "peak_mem_usage": [3305007616, 2578692608, 3304524288, 2578692608],
        }
46
47
48
49
50


def get_golden_synthetic_stats():
    # TODO(anj-s): Add support for synthetic regression benchmarks
    raise NotImplementedError("Synthetic data benchmarks are not supported.")