test_pipe.py 31.9 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
32
33
34
from fairscale.nn.model_parallel.initialize import (
    destroy_model_parallel,
    get_pipeline_parallel_group,
    initialize_model_parallel,
)
from fairscale.nn.pipe import LazyModule, Pipe
35
from fairscale.utils.testing import get_worker_map, set_random_seed, torch_spawn, torch_version
Tom Birch's avatar
Tom Birch committed
36
37
38


@torch_spawn([2])
39
40
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def parameters(pipeline_style):
Tom Birch's avatar
Tom Birch committed
41
    model = nn.Sequential(nn.Linear(1, 1))
42
    pipe = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
69
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
70
71
    else:
        t = torch.empty(100).cuda()
72
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
110
111
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def public_attrs(pipeline_style):
Tom Birch's avatar
Tom Birch committed
112
113
114
115
116
117
118
119
120
121
122
123
    class MyString:
        def __init__(self, value):
            self.value = value

        def __str__(self):
            return self.value

    model = nn.Sequential(nn.Linear(1, 1))

    pipe = Pipe(
        model,
        balance=(1,),
124
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        worker_map=get_worker_map(),
        chunks=42.000,
        checkpoint=MyString("always"),
    )

    print(f"balance = {pipe.devices}")
    assert pipe.balance == [1]
    assert pipe.devices is None
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
141
142
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def sequential_like(balance, pipeline_style):
Tom Birch's avatar
Tom Birch committed
143
144
145
146
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
147
    model = Pipe(model, balance, style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
180
181
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def balance_wrong_length(pipeline_style):
Tom Birch's avatar
Tom Birch committed
182
183
184
185
186
187
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
188
        Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
189
190

    with pytest.raises(ValueError):
191
        Pipe(model, balance=[3], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
192
193
194


@torch_spawn([2])
195
196
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def balance_less_than_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
197
198
199
200
201
202
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
203
        Pipe(model, balance=[0, 2], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
204
205

    with pytest.raises(ValueError):
206
        Pipe(model, balance=[-1, 3], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
207
208
209


@torch_spawn([1])
210
211
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def chunks_less_than_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
212
213
214
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
215
        Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
216
217

    with pytest.raises(ValueError):
218
        Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
219
220
221


@torch_spawn([1])
222
223
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def too_few_devices(pipeline_style):
Tom Birch's avatar
Tom Birch committed
224
225
226
227
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
228
        model = Pipe(model, balance=[1, 1, 1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
229
230
231


@torch_spawn([1])
232
233
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def batch_size_indivisible(pipeline_style):
Tom Birch's avatar
Tom Birch committed
234
    model = nn.Sequential(nn.Linear(1, 1))
235
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
236
237
238
239
240
241
242
243
244

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
245
246
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def batch_size_small(pipeline_style):
Tom Birch's avatar
Tom Birch committed
247
    model = nn.Sequential(nn.Linear(1, 1))
248
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
249
250
251
252
253
254
255
256
257

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
258
259
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def checkpoint_mode(pipeline_style):
Tom Birch's avatar
Tom Birch committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

    always = Pipe(
        model,
        balance=[1],
281
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
282
283
284
285
286
287
288
289
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="always",
        pipelined_backward=False,
    )
    except_last = Pipe(
        model,
        balance=[1],
290
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
291
292
293
294
295
296
297
298
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="except_last",
        pipelined_backward=False,
    )
    never = Pipe(
        model,
        balance=[1],
299
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="never",
        pipelined_backward=False,
    )

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
316
317
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def checkpoint_mode_invalid(pipeline_style):
Tom Birch's avatar
Tom Birch committed
318
319
320
321
322
323
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
        Pipe(
            model,
            balance=[1],
324
            style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
325
326
327
328
329
330
331
            worker_map=get_worker_map(),
            chunks=2,
            checkpoint="INVALID_CHECKPOINT",
        )


@torch_spawn([1])
332
333
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def checkpoint_mode_when_chunks_1(pipeline_style):
Tom Birch's avatar
Tom Birch committed
334
335
336
337
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
    Pipe(
338
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="except_last",
Tom Birch's avatar
Tom Birch committed
339
    )
340
341
    Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="always")
    Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1, checkpoint="never")
Tom Birch's avatar
Tom Birch committed
342
343
344


@torch_spawn([1])
345
346
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def checkpoint_eval(pipeline_style):
Tom Birch's avatar
Tom Birch committed
347
348
    model = nn.Sequential(nn.Linear(1, 1))
    model = Pipe(
349
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    )
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
375
376
377
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def checkpoint_non_float_input(pipeline_style):
Tom Birch's avatar
Tom Birch committed
378
379
380
381
382
383
384
385
386
387
388
389
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
    model = Pipe(
        model,
        balance=[1, 1],
390
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
391
392
393
394
395
396
397
398
399
400
401
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint="always",
        pipelined_backward=False,
    )

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()
402
    elif pipeline_style == Pipe.MultiProcess:
Tom Birch's avatar
Tom Birch committed
403
404
        model.back_helper(output)

405
406
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
407
408

@torch_spawn([1])
409
410
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def no_grad(pipeline_style):
Tom Birch's avatar
Tom Birch committed
411
    model = nn.Sequential(nn.Linear(1, 1))
412
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
413
414
415
416
417
418
419
420
421
422
423
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

424
425
    partition = model.mp_partitions[0]
    partition.module.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
426
427
428
429
430
431
432
433

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
434
435
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def exception(pipeline_style):
Tom Birch's avatar
Tom Birch committed
436
437
438
439
440
441
442
443
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
444
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
445
446
447
448
449
450
451

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
452
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
453
@pytest.mark.xfail(strict=True)
454
455
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def exception_early_stop_asap(pipeline_style):
Tom Birch's avatar
Tom Birch committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
483
    model = Pipe(model, [1, 1, 1, 1], style=pipeline_style, worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
484
485
486
487
488
489
490
491
492

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
493
494
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def input_pair(pipeline_style):
Tom Birch's avatar
Tom Birch committed
495
496
497
498
499
500
501
502
503
504
505
506
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
    model = Pipe(
507
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    )

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
522
523
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def input_singleton(pipeline_style):
Tom Birch's avatar
Tom Birch committed
524
525
526
527
528
529
530
531
532
533
534
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
    model = Pipe(
535
        model, balance=[1], style=pipeline_style, worker_map=get_worker_map(), chunks=2, pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
536
537
538
539
540
541
542
543
544
545
546
547
548
    )

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
549
550
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def input_varargs(pipeline_style):
Tom Birch's avatar
Tom Birch committed
551
    model = nn.Sequential(nn.Linear(1, 1))
552
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
553
554
555
556
557
558
559
560
561
562

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
563
564
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def non_tensor(pipeline_style):
Tom Birch's avatar
Tom Birch committed
565
566
567
568
569
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
570
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
571
572
573
574
575
576
577
578
579
580
581
582
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
583
584
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def non_tensor_tuple(pipeline_style):
Tom Birch's avatar
Tom Birch committed
585
586
587
588
589
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
590
    model = Pipe(model, balance=[1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
605
606
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def deferred_batch_norm(checkpoint, lazy, pipeline_style):
Tom Birch's avatar
Tom Birch committed
607
608
609
610
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
611
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
612
613
614
615
616
    else:
        model = nn.Sequential(pipe_bn)
    pipe = Pipe(
        model,
        balance=[1],
617
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
635
636
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def deferred_batch_norm_params(checkpoint, lazy, pipeline_style):
Tom Birch's avatar
Tom Birch committed
637
638
639
640
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
641
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
642
643
644
645
646
    else:
        model = nn.Sequential(pipe_bn)
    pipe = Pipe(
        model,
        balance=[1],
647
        style=pipeline_style,
Tom Birch's avatar
Tom Birch committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


665
@torch_spawn([4])
666
667
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def devices(pipeline_style):
Tom Birch's avatar
Tom Birch committed
668
669
670
671
672
673
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
674
    model = Pipe(model, [1, 1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
675
676

    # Extra devices must be discarded.
677
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
678
679
680
681
        assert model.pipeline is None


@torch_spawn([2])
682
683
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def partitions(pipeline_style):
Tom Birch's avatar
Tom Birch committed
684
685
686
687
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
688
    model = Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
689

690
    assert isinstance(model.mp_partitions, list)
Tom Birch's avatar
Tom Birch committed
691
    assert len(model) == 1
692
    assert isinstance(model.mp_partitions[0].module, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
693

694
695
696
697
    if model.group.rank() == 0:
        assert "0.0.weight" in model.state_dict()
    else:
        assert "0.1.weight" in model.state_dict()
Tom Birch's avatar
Tom Birch committed
698
699
700
701


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
702
703
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def deny_moving(pipeline_style):
Tom Birch's avatar
Tom Birch committed
704
705
706
707
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
708
    model = Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
726
727
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def empty_module(pipeline_style):
Tom Birch's avatar
Tom Birch committed
728
729
    # Empty sequential module is not illegal.
    model = nn.Sequential()
730
    model = Pipe(model, [], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
731
732
733
734
735
736
737
738
739
740
741

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

    # But only tensor or tensors is legal in Pipe.

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
742
743
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def named_children(pipeline_style):
Tom Birch's avatar
Tom Birch committed
744
745
746
747
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
748
    model = Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
749
750

    names = set(n for n, _ in model.named_modules())
751
752
753
754
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
755
756
757
758
759
760
761
762

    # Pipe doesn't support __getattr__. Unlike nn.Sequential, Pipe requires
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
763
764
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def recommend_auto_balance(pipeline_style):
Tom Birch's avatar
Tom Birch committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # balance is required
        Pipe(nn.Sequential())

    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
        Pipe(nn.Sequential(), [1])

    with pytest.raises(ValueError, match="fairscale.nn.pipe.balance"):
        # module and sum of balance have different length (module: 2, sum of balance: 1)
        Pipe(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])


@torch_spawn([2])
779
780
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def lazy_construction(pipeline_style):
Tom Birch's avatar
Tom Birch committed
781
782
783
784
785
786
787
788
789
790
791
792
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
793
794
795
796
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
797
798
    ]

799
    pipe = Pipe(model, balance=[2, 2], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
800
801
802
803
804
805
806
807

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
808
809
810
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def missing_worker_map(pipeline_style):
Tom Birch's avatar
Tom Birch committed
811
812
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

813
814
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
        Pipe(model, [1, 1], style=pipeline_style)
Tom Birch's avatar
Tom Birch committed
815
816
817
818


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
819
820
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def verify_module_duplicate_parameters_on_distinct_partitions(pipeline_style):
Tom Birch's avatar
Tom Birch committed
821
822
823
824
825
826
827
828
829
830
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
831
        Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
832
833
834


@torch_spawn([4])
835
836
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def pipelined_backward(pipeline_style):
Tom Birch's avatar
Tom Birch committed
837
838
839
840
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

    destroy_model_parallel()
    initialize_model_parallel(1, 4)
841
    pipe = Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
842
843
844
845
846

    assert pipe.pipelined_backward is False

    destroy_model_parallel()
    initialize_model_parallel(2, 2)
847
    pipe = Pipe(model, [1, 1], style=pipeline_style, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
848
849

    assert pipe.pipelined_backward is True
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032


@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
    pipe = Pipe(model, [1, 1, 1, 1], style=Pipe.AsyncSchedule, worker_map=get_worker_map(), chunks=10)

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()


@torch_spawn([4])
def reuse_lazy():
    if False:  # speed
        reused = LazyModule(lambda: nn.Linear(10, 10))
        model = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
        # model = [reused, reused, nn.Linear(10, 10), nn.ReLU(), reused, reused, nn.ReLU(), reused, reused, nn.ReLU()]
        pipe = Pipe(model, [3, 1, 1], style=Pipe.AsyncSchedule, worker_map=get_worker_map())
        pipe.eval()
        output = pipe(torch.rand(10))

        print(f"output on {pipe.group.rank()}, {output}")
        torch.distributed.barrier()

    set_random_seed(1234)
    # test both foward
    reused = nn.Linear(10, 10)
    layers = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
    model = nn.Sequential(*layers)
    model.eval()

    set_random_seed(1234)
    # ensure identical weights but no sharing between model and pipe
    reused = nn.Linear(10, 10)
    layers = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
    pipe = Pipe(layers, [3, 1, 1], style=Pipe.AsyncSchedule, worker_map=get_worker_map())
    pipe.eval()
    model_optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    pipe_optimizer = torch.optim.SGD(pipe.parameters(), lr=0.01, momentum=0.9) if len(list(pipe.parameters())) else None
    inputs = torch.rand(10)
    if False:  # speed
        model_out = model(inputs)
        pipe_out = pipe(inputs)

        torch.distributed.barrier()

        if pipe.final_stage:
            assert torch.equal(model_out, pipe_out)

    model.train()
    pipe.train()
    model_out = model(inputs)
    pipe_out = pipe(inputs)
    if pipe.final_stage:
        pipe_loss = pipe_out.mean()
        pipe_loss.backward()

    model_loss = model_out.mean()
    model_loss.backward()

    model_optimizer.step()
    if pipe_optimizer:
        pipe_optimizer.step()

    model.eval()
    pipe.eval()
    model_out = model(inputs)
    pipe_out = pipe(inputs)

    print(f"before barrier on {torch.distributed.get_rank()}")
    torch.distributed.barrier()
    print(f"after barrier on {torch.distributed.get_rank()}")

    if pipe.final_stage:
        assert torch.equal(model_out, pipe_out)


def test_instantiate_partition():
    from fairscale.nn.pipe.async_schedule import Location
    from fairscale.nn.pipe.pipe import instantiate_partition

    class FakeGroup:
        def __init__(self, rank, size):
            self._rank = rank
            self._size = size

        def rank(self):
            return self._rank

        def size(self):
            return self._size

    def check_partitions(model, balance, expected_order, expected_ranks):
        """Check the instantiated model matches expectation of order and rank

        model: a list of modules or an nn.Sequential
        balance: the balance argument to Pipe
        expected_order: the index of modules in `model` in the order they will
            be executed, grouped by nn.Sequential
        expected_rank: the rank that each module will be executed on
        """

        invocations = []
        invocation_wrapper = dict()

        # Collect `Invocation` and `Invocation` -> `ModuleWrapper` mapping from
        # instantiated model
        for rank in range(len(balance)):
            instantiated = instantiate_partition(model, balance, FakeGroup(rank, len(balance)), Pipe.AsyncSchedule)
            for part in instantiated:
                assert isinstance(part.module, nn.Sequential)
                for inv in part.invocations:
                    invocations.append(inv)
                    invocation_wrapper[inv] = part

        modules = []
        prev = None
        current = Location(0, 0)
        ranks = []

        for order, inv in enumerate(sorted(invocations, key=lambda x: x.order)):
            # Check integrity of Location chain
            assert inv.order == order
            assert inv.source == prev
            assert inv.this == current
            prev = inv.this
            current = inv.dest
            modules.append(list(invocation_wrapper[inv].module.children()))
            ranks.append(inv.this.stage)

        # assert len(modules) == len(expected_order)
        for left, right in zip(modules, expected_order):
            assert len(left) == len(right), f"{right}"
            assert list(map(id, left)) == list(map(id, (model[e] for e in right))), f"{right}"

        assert ranks == expected_ranks

    reused = nn.Linear(20, 20)
    model = [reused, nn.Linear(10, 10), nn.ReLU(), reused, nn.ReLU(), reused, nn.ReLU()]
    balance = [3, 1, 1]

    check_partitions(
        model, balance, expected_order=[[0], [1, 2], [0], [4], [0], [6]], expected_ranks=[0, 0, 0, 1, 0, 2]
    )

    reused2 = nn.Linear(5, 5)
    model = [reused, reused2, nn.Linear(10, 10), nn.ReLU(), reused, reused2, nn.ReLU(), reused, reused2, nn.ReLU()]
    balance = [4, 1, 1]

    check_partitions(
        model,
        balance,
        expected_order=[[0], [1], [2, 3], [0], [1], [6], [0], [1], [9]],
        expected_ranks=[0, 0, 0, 0, 0, 1, 0, 0, 2],
    )

    reused2 = nn.Linear(5, 5)
    model = [
        nn.Linear(10, 10),
        reused,
        nn.Linear(10, 10),
        nn.ReLU(),
        reused,
        reused2,
        nn.ReLU(),
        reused,
        reused2,
        nn.ReLU(),
    ]
    # 0 1 2 3 1 5 6 1 5 9
    balance = [4, 2, 1]

    check_partitions(
        model,
        balance,
        expected_order=[[0], [1], [2, 3], [1], [5], [6], [1], [5], [9]],
        expected_ranks=[0, 0, 0, 0, 1, 1, 0, 1, 2],
    )