test_checkpoint_activations_norm.py 2.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

""" Test checkpoint_wrapper with normalization layers. """

import pytest
import torch
from torch.nn import BatchNorm2d, LayerNorm, Linear, Sequential
from torch.optim import SGD

17
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from fairscale.utils.testing import objects_are_equal, torch_version

NORM_TYPES = [LayerNorm, BatchNorm2d]
MP_TYPES = ["fp32", "fp16", "call_half"]


def get_model(norm_type, checkpointed, mixed_precision):
    assert norm_type in NORM_TYPES, norm_type
    assert checkpointed in [True, False], checkpointed
    assert mixed_precision in MP_TYPES

    model = Sequential(Linear(3, 2), norm_type(2))

    if mixed_precision == "fp16":
        # Set param.data and buffers as fp16
        for p in model.parameters():
            p.data = p.data.half()
        for m in model:
            for n, b in m.named_buffers():
                setattr(m, n, b.half())
    elif mixed_precision == "call_half":
        model.half()

    if checkpointed:
        model = checkpoint_wrapper(model)

    return model


@pytest.mark.parametrize("device", ["cpu", "cuda"])
@pytest.mark.parametrize("norm_type", NORM_TYPES)
@pytest.mark.parametrize("mixed_precision", MP_TYPES)
def test_norm(device, norm_type, mixed_precision):
    """Test checkpoint_wrapper with different norm layers."""
    if device == "cuda" and not torch.cuda.is_available():
        pytest.skip("Skip due to lack of GPU")

    # Get input, ref, checkpoint models and make them equal.
    in_data = torch.rand(2, 2, 3, 3).to(device)
    m_ref = get_model(norm_type, False, mixed_precision).to(device)
    m_cpt = get_model(norm_type, True, mixed_precision).to(device)
    m_cpt.load_state_dict(m_ref.state_dict())

    if torch_version() >= (1, 6, 0):
        # This assert fails on 1.5.1.
        assert objects_are_equal(m_ref.state_dict(), m_cpt.state_dict())

    if mixed_precision != "fp32":
        in_data = in_data.half()

    # Needed due to checkpointing.
    in_data.requires_grad = True
    for model in (m_ref, m_cpt):
        optim = SGD(model.parameters(), lr=0.1)
        if device == "cpu" and mixed_precision != "fp32":
            # Got: RuntimeError: "batch_norm"/"layer_norm" not implemented for 'Half'.
            with pytest.raises(RuntimeError):
                out = model(in_data)
            return
        else:
            # Everything else work.
            out = model(in_data)
        out.sum().backward()
        optim.step()

    if torch_version() >= (1, 6, 0):
        assert objects_are_equal(m_ref.state_dict(), m_cpt.state_dict())