benchmark_mevo.py 5.66 KB
Newer Older
Min Xu's avatar
Min Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import contextlib
from pprint import pprint
from statistics import mean
import time

import torch
from torch import nn
from torch.cuda import Event

from fairscale.experimental.nn import MEVO, BaselineSoftmaxNllLoss
from fairscale.experimental.nn.mevo import get_data

"""Benchmarking the MEVO kernel and its Baseline."""

SHAPES = [
    # name, activation, FC weights
    ("1k_128h_256k", (1024, 128), (128, 256 * 1024)),
    # ("4k_128h_256k", (4096, 128), (128, 256 * 1024)),
    # ("8k_4k_32k", (4 * 2048, 4 * 1024), (4 * 1024, 32 * 1024)),
    # ("24k_4k_50k", (12 * 2048, 4 * 1024), (4 * 1024, 50 * 1024)),
    # ("8k_4k_256k", (4 * 2048, 4 * 1024), (4 * 1024, 256 * 1024)),
    # ("8k_4k_256008", (4 * 2048, 4 * 1024), (4 * 1024, 256008)),  # max seq len for base is 2100, 2300 for top-k
    # ("xk_4k_256008", (1 * 2048, 4 * 1024), (4 * 1024, 256008)),
]
KERNELS = [
    BaselineSoftmaxNllLoss,
    MEVO,
]


def run_on_gpu(kernel, data, repeats, no_grad, fwd_bwd):
    """ Measure both GPU runtime and peak memory usage of a kernel. """
    tokens = data[0].shape[0]

    def get_cuda_data():
        """Move the data from CPU to GPU. We make a new weight parameter with this call."""
        with torch.no_grad():
            i, w, t = data  # i, t are tensors, w is a param
            w = nn.Linear(w.shape[1], w.shape[0], bias=False, dtype=w.dtype, device="cuda").weight
            assert w.requires_grad
            return i.cuda().requires_grad_(True), w, t.cuda()

    def _test(kernel_obj, event):
        """Forward and backward passes."""
        context = contextlib.suppress()
        if no_grad:
            context = torch.no_grad()
        with context:
            if event is not None:
                event.record()
            out = kernel_obj(input, target)
            if fwd_bwd:
                assert not no_grad
                out.backward()
            del out
        if fwd_bwd:
            assert input.grad is not None, input
            assert weight.grad is not None, weight
            assert target.grad is None, target
            input.grad = None
            weight.grad = None

    def _get_kernel():
        """Get a kernel instance."""
        return kernel(weight, tile_factor=16)

    #
    # Run the test once to measure memory.
    #

    # Ensure GPU memory is clean, empty, 0.
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    cur_mem_before = round(torch.cuda.memory_allocated() / 1024 / 1024)
    assert cur_mem_before == 0, cur_mem_before

    # Move tensors to GPU.
    input, weight, target = get_cuda_data()

    # Create the kernel
    k = _get_kernel()
    _test(k, None)

    # Might wait for gpu here
    torch.cuda.synchronize()

    # Free memory, ensure everything is clean, no leak.
    del k
    del input
    del weight
    del target
    cur_mem_after = round(torch.cuda.memory_allocated() / 1024 / 1024)
    assert cur_mem_after == 0, cur_mem_after

    # Get peak mem
    peak_mem_after = round(torch.cuda.max_memory_allocated() / 1024 / 1024)
    peak_mem = peak_mem_after - cur_mem_before

    #
    # Run multiple times to get both CPU timing and average GPU timing.
    #

    # Move tensors to GPU and get k, again.
    input, weight, target = get_cuda_data()
    k = _get_kernel()

    # Get the events
    events = [Event(enable_timing=True) for _ in range(repeats + 1)]

    # Queue the ops to GPU
    cpu_start_time = time.time()
    for i in range(repeats):
        _test(k, events[i])
    events[i + 1].record()  # end time of the last run
    # CPU could be done much sooner than the GPU here.
    cpu_time = time.time() - cpu_start_time
    # Might wait for gpu here
    torch.cuda.synchronize()

    # Get the durations
    durations = [cpu_time * 1000]  # convert CPU time, from seconds to ms.
    for x, y in zip(events, events[1:]):
        durations.append(x.elapsed_time(y))
    assert len(durations) == repeats + 1

    # Free memory
    del k
    input, weight, target = None, None, None
    cur_mem_after = round(torch.cuda.memory_allocated() / 1024 / 1024)
    assert cur_mem_after == 0, cur_mem_after

    # Skip 2 for cpu time and first warm up time to compute the average.
    time_per_call = mean(durations[2:])  # ms
    time_per_token = time_per_call * 1000 / tokens  # us
    return peak_mem, durations[:2] + [time_per_call, time_per_token]


def main():
    parser = argparse.ArgumentParser("Benchmarking MEVO")

    parser.add_argument("--dtype", type=str, choices=["fp16", "fp32"], default="fp16")
    parser.add_argument("--grad", type=str, choices=["grad", "no_grad"], default="grad")
    parser.add_argument("--fwd_bwd", action="store_true", default=False)
    args = parser.parse_args()

    repeats = 9
    results = {}
    results["peak cached"] = {}
    results["durations"] = {}
    for shape in SHAPES:
        name = shape[0]
        results["peak cached"][name] = {}
        results["durations"][name] = {}
        dtype = torch.float32 if args.dtype == "fp32" else torch.float16
        # Use cpu memory to ensure we always start with an empty GPU
        data = get_data(shape[1:], dtype, "cpu")
        for kernel in KERNELS:
            k_name = kernel.__name__
            no_grad = args.grad
            print(f"Running {k_name} with {name} {dtype} {no_grad} data")
            peak_mem, durations = run_on_gpu(kernel, data, repeats, no_grad == "no_grad", args.fwd_bwd)
            results["peak cached"][name][k_name] = peak_mem
            results["durations"][name][k_name] = durations
    pprint(results)


if __name__ == "__main__":
    main()