test_transparency.py 2.5 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn

from fairscale.nn import Pipe
from tests.nn.model_parallel.commons import get_worker_map, set_random_seed, torch_spawn


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
30
31
@pytest.mark.parametrize("pipeline_style", [Pipe.MultiProcess, Pipe.AsyncSchedule])
def simple_linears(pipeline_style):
Tom Birch's avatar
Tom Birch committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    def sum_grad(parameters):
        return sum([p.grad.sum() for p in parameters if p.grad is not None])

    def zero_grad(parameters):
        for p in parameters:
            p.grad = None

    set_random_seed(12345)
    inputs = torch.rand(8, 1)
    model = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 4), nn.Linear(4, 2), nn.Linear(2, 1),)

    # Without Pipe
    outputs = model(inputs)
    loss = outputs.mean()
    loss.backward()

    grad_without_pipe = [
        sum_grad([*model[0].parameters(), *model[1].parameters()]),
        sum_grad([*model[2].parameters(), *model[3].parameters()]),
    ]

    ref_without_pipe = [p.grad for p in model.parameters()]

    zero_grad(model.parameters())

    # With Pipe
58
    model = Pipe(model, [2, 2], style=pipeline_style, worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
59
60
61
62
63

    outputs = model(inputs)
    if model.group.rank() == 1:
        loss = outputs.mean()
        loss.backward()
64
        grad_with_pipe = sum_grad(model.pipeline.mp_partitions[0].module.parameters())
Tom Birch's avatar
Tom Birch committed
65
66
67
68
69

        # Both grads should be identical.
        assert torch.allclose(grad_with_pipe, grad_without_pipe[1])
    else:
        model.back_helper(outputs)
70
        grad_with_pipe = sum_grad(model.pipeline.mp_partitions[0].module.parameters())
Tom Birch's avatar
Tom Birch committed
71
72
73
74

        # Both grads should be identical.
        assert torch.allclose(grad_with_pipe, grad_without_pipe[0])
    torch.distributed.barrier()