test_checkpoint_activations.py 6.59 KB
Newer Older
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
"""Test fairscale.nn.misc.checkpoint_activations API."""
7

8
import pytest
9
10
import torch
import torch.nn as nn
11
from torch.utils.checkpoint import checkpoint as torch_checkpoint_wrapper
12
13

from fairscale.nn.misc.checkpoint_activations import checkpoint_wrapper
14
from fairscale.utils.testing import skip_if_no_cuda, torch_version
15
16


17
18
19
20
21
22
23
24
def get_cuda_mem_allocated():
    """Helper to get cuda memory allocated if possible."""
    if torch.cuda.is_available():
        return torch.cuda.memory_allocated()
    else:
        return 0


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def get_loss_and_gnorm(model, input):
    """Helper to run a forward/backward pass and return results in a dict."""
    ret = {}

    ret["mem_0"] = get_cuda_mem_allocated()
    ret["mem_peak"] = 0
    if ret["mem_0"] > 0:
        torch.cuda.reset_peak_memory_stats()

    model.zero_grad()
    loss = model(input).sum()
    ret["mem_after_fwd"] = get_cuda_mem_allocated()

    loss.backward()
    ret["mem_after_bwd"] = get_cuda_mem_allocated()

    gnorm = torch.norm(torch.stack([torch.norm(p.grad.detach()) for p in model.parameters()]))
    ret["loss"] = loss.item()
    ret["gnorm"] = gnorm.item()

    if ret["mem_0"] > 0:
        ret["mem_peak"] = torch.cuda.max_memory_allocated()

    return ret


class BasicModel(nn.Module):
    """Basic model with a single FFN being checkpointed.

       Used for extensive checkings: equivalency with non-checkpoint, torch-checkpoint, etc.
    """

57
    def __init__(self, use_pytorch_checkpoint=False, use_fairscale_checkpoint=False, **kwargs):
58
        super().__init__()
59
60
61
62
        torch.manual_seed(0)  # make sure weights are deterministic.
        assert not (
            use_pytorch_checkpoint and use_fairscale_checkpoint
        ), "Cannot use both pytorch and fairscale checkpointing mechanisms."
63
64
65
66
67
68
69
        self.use_pytorch_checkpoint = use_pytorch_checkpoint
        self.ffn = nn.Sequential(
            nn.Linear(32, 128),
            # add a Dropout layer to test RNG save/restore
            nn.Dropout(p=0.5),
            nn.Linear(128, 32),
        )
70
        if use_fairscale_checkpoint:
71
72
73
74
75
            self.ffn = checkpoint_wrapper(self.ffn, **kwargs)
        self.out = nn.Linear(32, 1)

    def forward(self, x):
        if self.use_pytorch_checkpoint:
76
            x = torch_checkpoint_wrapper(self.ffn, x)
77
78
79
80
81
        else:
            x = self.ffn(x)
        return self.out(x)


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_basic(device):
    if "cuda" in device and not torch.cuda.is_available():
        pytest.skip("test requires a GPU")

    input = torch.rand(2, 16, 32).requires_grad_(True)
    model = BasicModel().to(device)
    no_cpt = get_loss_and_gnorm(model, input.to(device))

    model = BasicModel(use_pytorch_checkpoint=True).to(device)
    pyt_cpt = get_loss_and_gnorm(model, input.to(device))

    model = BasicModel(use_fairscale_checkpoint=True).to(device)
    fairscale_cpt = get_loss_and_gnorm(model, input.to(device))

    model = BasicModel(use_fairscale_checkpoint=True, offload_to_cpu=True).to(device)
    fairscale_cpt_offload = get_loss_and_gnorm(model, input.to(device))

    # Check for correctness.
    for key in "loss", "gnorm":
        if not (no_cpt[key] == pyt_cpt[key] == fairscale_cpt[key] == fairscale_cpt_offload[key]):
            print(no_cpt, pyt_cpt, fairscale_cpt, fairscale_cpt_offload)
            assert 0
        del no_cpt[key]
        del pyt_cpt[key]
        del fairscale_cpt[key]
        del fairscale_cpt_offload[key]

    # Check for memory usage for cuda only.
    if "cpu" in device:
        return

    mem_peaks = [98816, 103424, 103424, 107520]
    if torch_version() < (1, 7, 0):
        # Older torch behaves slightly differently
        mem_peaks = [102400, 103424, 103424, 107520]

    assert no_cpt == {"mem_0": 38912, "mem_peak": mem_peaks[0], "mem_after_fwd": 64000, "mem_after_bwd": 74240}, no_cpt
    assert pyt_cpt == {
        "mem_0": 38912,
        "mem_peak": mem_peaks[1],
        "mem_after_fwd": 43520,
        "mem_after_bwd": 74240,
    }, pyt_cpt
    assert fairscale_cpt == {
        "mem_0": 38912,
        "mem_peak": mem_peaks[2],
        "mem_after_fwd": 43520,
        "mem_after_bwd": 74240,
    }, fairscale_cpt
    assert fairscale_cpt_offload == {
        "mem_0": 38912,
        "mem_peak": mem_peaks[3],
        "mem_after_fwd": 43520,
        "mem_after_bwd": 74240,
    }, fairscale_cpt_offload


class CpuOffloadModel(nn.Module):
    """Model used to check cpu offload memory saving"""

    def __init__(self, enable_checkpoint=False, cpu_offload=False):
        super().__init__()

        torch.manual_seed(0)  # make sure weights are deterministic.

        # These numbers are picked to show cpu_offload memory saving.
        # Inner (recomputed) activation sizes need to be just right
        # to show the benefit.
        self.layers = nn.Sequential(
            nn.Sequential(nn.Linear(4, 4), nn.Linear(4, 4), nn.Linear(4, 8)),
            nn.Sequential(nn.Linear(8, 4), nn.Linear(4, 4), nn.Linear(4, 4)),
            nn.Sequential(nn.Linear(4, 6), nn.Linear(6, 8), nn.Linear(8, 2)),
        )

        if enable_checkpoint:
            for i, layer in enumerate(self.layers):
                # Only middle layer needs to have offloading
                self.layers[i] = checkpoint_wrapper(layer, cpu_offload if i == 1 else False)

    def forward(self, x):
        return self.layers(x)


@skip_if_no_cuda
def test_offload_memory():
    device = "cuda"

    input = torch.rand(60, 24, 4).requires_grad_(True)

    model = CpuOffloadModel().to(device)
    base = get_loss_and_gnorm(model, input.to(device))

    model = CpuOffloadModel(True).to(device)
    cpt = get_loss_and_gnorm(model, input.to(device))

    model = CpuOffloadModel(True, True).to(device)
    offload = get_loss_and_gnorm(model, input.to(device))

    for key in "loss", "gnorm":
        if not (base[key] == cpt[key] == offload[key]):
            # Use print to collect all debugging info.
            print(base, cpt, offload)
            assert 0
        del base[key]
        del cpt[key]
        del offload[key]

    ref_base = {"mem_0": 32256, "mem_peak": 334336, "mem_after_fwd": 274944, "mem_after_bwd": 41984}
    ref_cpt = {"mem_0": 32256, "mem_peak": 253952, "mem_after_fwd": 101888, "mem_after_bwd": 41984}
    ref_offload = {"mem_0": 32256, "mem_peak": 207872, "mem_after_fwd": 55808, "mem_after_bwd": 41984}

    if not (base == ref_base and cpt == ref_cpt and offload == ref_offload):
        # Use print to collect all debugging info.
        print(base, cpt, offload)
        assert 0