oss.py 4.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import argparse
import math
import os
import time
from typing import Any, List

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import FakeData
from torchvision.models import resnet101
from torchvision.transforms import ToTensor

from fairscale.optim.oss import OSS

BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore


def dist_init(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
    dist.init_process_group(backend=BACKEND, rank=rank, world_size=world_size)


def train(
    rank: int,
    world_size: int,
    num_epochs: int = 10,
    batch_size: int = 32,
    data_size: int = 200,
    use_oss: bool = True,
    check_regression: bool = True,
    reference_speed: float = -1.0,
):
    # DDP
    dist_init(rank, world_size)

    # Standard RN101
    model = resnet101(pretrained=False, progress=True).to(rank)

    # Data setup, dummy data
    def collate(inputs: List[Any]):
        return {
            "inputs": torch.stack([i[0] for i in inputs]).to(rank),
            "label": torch.stack([i[1] for i in inputs]).to(rank),
        }

    def _print(msg):
        if dist.get_rank() == 0:
            print(msg)

    dataloader = DataLoader(
        dataset=FakeData(transform=ToTensor(), size=data_size), batch_size=batch_size, collate_fn=collate
    )
    loss_fn = nn.CrossEntropyLoss()

    # Shard the optimizer
    optimizer = (
        OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-4, momentum=0.9)
        if use_oss
        else torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    )

    # Dummy training loop
    torch.cuda.synchronize(rank)
    training_start = time.monotonic()
    model.train()

    measurements = []

    for epoch in range(num_epochs):
        epoch_start = time.monotonic()

        for batch in dataloader:

            def closure():
                model.zero_grad()
                outputs = model(batch["inputs"])
                loss = loss_fn(outputs, batch["label"])
                dist.all_reduce(loss, op=dist.ReduceOp.SUM)
                loss /= world_size
                loss.backward()
                return loss

            optimizer.step(closure)

        epoch_end = time.monotonic()
        measurements.append(data_size / (epoch_end - epoch_start))
        _print(f"Epoch {epoch} - processed {measurements[-1]:.2f} img per sec")

    torch.cuda.synchronize(rank)
    training_stop = time.monotonic()
    img_per_sec = data_size / (training_stop - training_start) * num_epochs
    max_memory = torch.cuda.max_memory_allocated(rank) / 2 ** 20

    print(f"[{dist.get_rank()}] : Training done. {img_per_sec:.2f} img per sec overall")
    print(f"[{dist.get_rank()}] : Peak memory {max_memory:.1f}MiB")

    if use_oss and check_regression and dist.get_rank() == 0:
        # Compute the mean and average img per second
        mean = sum(measurements) / len(measurements)
        diff = map(lambda x: pow(x - mean, 2.0), measurements)
        std = math.sqrt(sum(diff) / (len(measurements) - 1))
        print(f"[Regression Test] Mean: {mean:.2f} +/- {std:.2f}")
        assert (mean - 3.0 * std) < reference_speed, "Regression detected"
        print("[Regression Test] VALID")


if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        description="Benchmark the optimizer state sharding, on a typical computer vision workload"
    )
    parser.add_argument("--world_size", action="store", default=2, type=int)
    parser.add_argument("--epochs", action="store", default=10, type=int)
    parser.add_argument("--batch_size", action="store", default=32, type=int)
    parser.add_argument("--data_size", action="store", default=512, type=int)
    parser.add_argument("--check_regression", action="store", default=True, type=bool)
    parser.add_argument("--reference_speed", action="store", default=39.82, type=float)

    args = parser.parse_args()

    print("\nBenchmark vanilla SGD")
    mp.spawn(
        train,
        args=(args.world_size, args.epochs, args.batch_size, args.data_size, False, False),
        nprocs=args.world_size,
        join=True,
    )

    print("\nBenchmark OSS")
    mp.spawn(
        train,
        args=(
            args.world_size,
            args.epochs,
            args.batch_size,
            args.data_size,
            True,
            args.check_regression,
            args.reference_speed,
        ),
        nprocs=args.world_size,
        join=True,
    )