test_pipe.py 24.4 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
32
33
from fairscale.nn.model_parallel.initialize import (
    destroy_model_parallel,
    get_pipeline_parallel_group,
    initialize_model_parallel,
)
34
from fairscale.nn.pipe import AsyncPipe, LazyModule, MultiProcessPipe
35
from fairscale.utils.testing import get_worker_map, torch_spawn, torch_version
Tom Birch's avatar
Tom Birch committed
36
37
38


@torch_spawn([2])
39
40
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def parameters(pipe_class):
Tom Birch's avatar
Tom Birch committed
41
    model = nn.Sequential(nn.Linear(1, 1))
42
    pipe = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
69
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
70
71
    else:
        t = torch.empty(100).cuda()
72
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
110
111
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def public_attrs(pipe_class):
Tom Birch's avatar
Tom Birch committed
112
113
    model = nn.Sequential(nn.Linear(1, 1))

114
    pipe = pipe_class(model, balance=(1,), worker_map=get_worker_map(), chunks=42, checkpoint="always",)
Tom Birch's avatar
Tom Birch committed
115
116
117
118
119
120
121
122
123
124

    assert pipe.balance == [1]
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
125
126
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def sequential_like(balance, pipe_class):
Tom Birch's avatar
Tom Birch committed
127
128
129
130
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
131
    model = pipe_class(model, balance, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
164
165
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def balance_wrong_length(pipe_class):
Tom Birch's avatar
Tom Birch committed
166
167
168
169
170
171
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
172
        pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
173
174

    with pytest.raises(ValueError):
175
        pipe_class(model, balance=[3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
176
177
178


@torch_spawn([2])
179
180
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def balance_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
181
182
183
184
185
186
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
187
        pipe_class(model, balance=[0, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
188
189

    with pytest.raises(ValueError):
190
        pipe_class(model, balance=[-1, 3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
191
192
193


@torch_spawn([1])
194
195
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def chunks_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
196
197
198
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
199
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
200
201

    with pytest.raises(ValueError):
202
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
203
204
205


@torch_spawn([1])
206
207
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def too_few_devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
208
209
210
211
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
212
        model = pipe_class(model, balance=[1, 1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
213
214
215


@torch_spawn([1])
216
217
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def batch_size_indivisible(pipe_class):
Tom Birch's avatar
Tom Birch committed
218
    model = nn.Sequential(nn.Linear(1, 1))
219
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
220
221
222
223
224
225
226
227
228

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
229
230
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def batch_size_small(pipe_class):
Tom Birch's avatar
Tom Birch committed
231
    model = nn.Sequential(nn.Linear(1, 1))
232
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
233
234
235
236
237
238
239
240
241

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
242
243
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode(pipe_class):
Tom Birch's avatar
Tom Birch committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

262
263
    always = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="always", pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
264
    )
265
266
    except_last = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="except_last", pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
267
    )
268
269
    never = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="never", pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
270
271
272
273
274
275
276
277
278
279
280
281
    )

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
282
283
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode_invalid(pipe_class):
Tom Birch's avatar
Tom Birch committed
284
285
286
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
287
288
        pipe_class(
            model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="INVALID_CHECKPOINT",
Tom Birch's avatar
Tom Birch committed
289
290
291
292
        )


@torch_spawn([1])
293
294
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode_when_chunks_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
295
296
297
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
298
299
    pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="except_last",
300
    )
301
302
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="always")
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="never")
Tom Birch's avatar
Tom Birch committed
303
304
305


@torch_spawn([1])
306
307
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_eval(pipe_class):
Tom Birch's avatar
Tom Birch committed
308
    model = nn.Sequential(nn.Linear(1, 1))
309
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, pipelined_backward=False,)
Tom Birch's avatar
Tom Birch committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
334
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
335
336
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_non_float_input(pipe_class):
Tom Birch's avatar
Tom Birch committed
337
338
339
340
341
342
343
344
345
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
346
347
    model = pipe_class(
        model, balance=[1, 1], worker_map=get_worker_map(), chunks=1, checkpoint="always", pipelined_backward=False,
Tom Birch's avatar
Tom Birch committed
348
349
350
351
352
353
354
    )

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()
355
    elif pipe_class == MultiProcessPipe:
Tom Birch's avatar
Tom Birch committed
356
357
        model.back_helper(output)

358
359
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
360
361

@torch_spawn([1])
362
363
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def no_grad(pipe_class):
Tom Birch's avatar
Tom Birch committed
364
    model = nn.Sequential(nn.Linear(1, 1))
365
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
366
367
368
369
370
371
372
373
374
375
376
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

377
    partition = model.partitions[0]
378
    partition.module.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
379
380
381
382
383
384
385
386

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
387
388
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def exception(pipe_class):
Tom Birch's avatar
Tom Birch committed
389
390
391
392
393
394
395
396
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
397
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
398
399
400
401
402
403
404

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
405
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
406
@pytest.mark.xfail(strict=True)
407
408
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def exception_early_stop_asap(pipe_class):
Tom Birch's avatar
Tom Birch committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
436
    model = pipe_class(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
437
438
439
440
441
442
443
444
445

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
446
447
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_pair(pipe_class):
Tom Birch's avatar
Tom Birch committed
448
449
450
451
452
453
454
455
456
457
458
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
459
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, pipelined_backward=False,)
Tom Birch's avatar
Tom Birch committed
460
461
462
463
464
465
466
467
468
469
470
471
472

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
473
474
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_singleton(pipe_class):
Tom Birch's avatar
Tom Birch committed
475
476
477
478
479
480
481
482
483
484
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
485
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, pipelined_backward=False,)
Tom Birch's avatar
Tom Birch committed
486
487
488
489
490
491
492
493
494
495
496
497

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
498
499
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_varargs(pipe_class):
Tom Birch's avatar
Tom Birch committed
500
    model = nn.Sequential(nn.Linear(1, 1))
501
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
502
503
504
505
506
507
508
509
510
511

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
512
513
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def non_tensor(pipe_class):
Tom Birch's avatar
Tom Birch committed
514
515
516
517
518
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
519
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
520
521
522
523
524
525
526
527
528
529
530
531
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
532
533
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def non_tensor_tuple(pipe_class):
Tom Birch's avatar
Tom Birch committed
534
535
536
537
538
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
539
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
554
555
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deferred_batch_norm(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
556
557
558
559
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
560
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
561
562
    else:
        model = nn.Sequential(pipe_bn)
563
564
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
565
566
567
568
569
570
571
572
573
574
575
576
577
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
578
579
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deferred_batch_norm_params(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
580
581
582
583
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
584
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
585
586
    else:
        model = nn.Sequential(pipe_bn)
587
588
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
589
590
591
592
593
594
595
596
597
598
599
600
601
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


602
@torch_spawn([4])
603
604
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
605
606
607
608
609
610
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
611
    model = pipe_class(model, [1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
612
613

    # Extra devices must be discarded.
614
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
615
616
617
618
        assert model.pipeline is None


@torch_spawn([2])
619
620
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
621
622
623
624
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
625
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
626

627
    assert isinstance(model.partitions, list)
Tom Birch's avatar
Tom Birch committed
628
    assert len(model) == 1
629
    assert isinstance(model.partitions[0].module, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
630

631
632
633
634
    if model.group.rank() == 0:
        assert "0.0.weight" in model.state_dict()
    else:
        assert "0.1.weight" in model.state_dict()
Tom Birch's avatar
Tom Birch committed
635
636
637
638


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
639
640
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deny_moving(pipe_class):
Tom Birch's avatar
Tom Birch committed
641
642
643
644
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
645
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
663
664
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def empty_module(pipe_class):
Tom Birch's avatar
Tom Birch committed
665
666
    # Empty sequential module is not illegal.
    model = nn.Sequential()
667
    model = pipe_class(model, [], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
668
669
670
671

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

672
    # But only tensor or tensors is legal in MultiProcessPipe.
Tom Birch's avatar
Tom Birch committed
673
674
675
676
677
678

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
679
680
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def named_children(pipe_class):
Tom Birch's avatar
Tom Birch committed
681
682
683
684
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
685
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
686
687

    names = set(n for n, _ in model.named_modules())
688
689
690
691
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
692

693
    # MultiProcessPipe doesn't support __getattr__. Unlike nn.Sequential, MultiProcessPipe requires
Tom Birch's avatar
Tom Birch committed
694
695
696
697
698
699
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
700
701
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def recommend_auto_balance(pipe_class):
702
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
703
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
704
        pipe_class(nn.Sequential(), [1])
Tom Birch's avatar
Tom Birch committed
705

706
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
707
        # module and sum of balance have different length (module: 2, sum of balance: 1)
708
        pipe_class(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])
Tom Birch's avatar
Tom Birch committed
709
710
711


@torch_spawn([2])
712
713
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def lazy_construction(pipe_class):
Tom Birch's avatar
Tom Birch committed
714
715
716
717
718
719
720
721
722
723
724
725
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
726
727
728
729
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
730
731
    ]

732
    pipe = pipe_class(model, balance=[2, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
733
734
735
736
737
738
739
740

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
741
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
742
743
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def missing_worker_map(pipe_class):
Tom Birch's avatar
Tom Birch committed
744
745
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

746
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
747
        pipe_class(model, [1, 1])
Tom Birch's avatar
Tom Birch committed
748
749
750
751


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
752
753
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def verify_module_duplicate_parameters_on_distinct_partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
754
755
756
757
758
759
760
761
762
763
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
764
        pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
765
766
767


@torch_spawn([4])
768
769
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def pipelined_backward(pipe_class):
Tom Birch's avatar
Tom Birch committed
770
771
772
773
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

    destroy_model_parallel()
    initialize_model_parallel(1, 4)
774
    pipe = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
775
776
777
778
779

    assert pipe.pipelined_backward is False

    destroy_model_parallel()
    initialize_model_parallel(2, 2)
780
    pipe = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
781
782

    assert pipe.pipelined_backward is True
783
784
785
786
787
788


@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
789
    pipe = AsyncPipe(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=10)
790
791
792
793
794
795
796

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()