oss.py 8.55 KB
Newer Older
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import argparse
5
from enum import Enum
6
7
import math
import time
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
8
from typing import Any, List, Optional, cast
9

10
import numpy as np
11
12
13
14
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
15
from torch.nn.parallel import DistributedDataParallel as DDP
16
17
18
19
20
from torch.utils.data import DataLoader
from torchvision.datasets import FakeData
from torchvision.models import resnet101
from torchvision.transforms import ToTensor

21
from fairscale.nn.data_parallel import ShardedDataParallel
22
23
from fairscale.optim.oss import OSS

24
OPTIM = torch.optim.RMSprop
25
26


27
28
29
def dist_init(rank, world_size, backend):
    print(f"Using backend: {backend}")
    dist.init_process_group(backend=backend, init_method="tcp://localhost:29501", rank=rank, world_size=world_size)
30
31


32
def get_problem(rank, data_size, batch_size):
33
34
35
36
37
38
    # Standard RN101
    model = resnet101(pretrained=False, progress=True).to(rank)

    # Data setup, dummy data
    def collate(inputs: List[Any]):
        return {
39
40
            "inputs": torch.stack([i[0] for i in inputs]).to(torch.device(rank)),
            "label": torch.stack([i[1] for i in inputs]).to(torch.device(rank)),
41
42
43
        }

    dataloader = DataLoader(
44
45
46
        dataset=FakeData(transform=ToTensor(), size=data_size, random_offset=rank),
        batch_size=batch_size,
        collate_fn=collate,
47
48
    )
    loss_fn = nn.CrossEntropyLoss()
49
50
51
52
53
54
55
56
57
    return model, dataloader, loss_fn


def train(
    rank: int,
    world_size: int,
    num_epochs: int = 10,
    batch_size: int = 32,
    data_size: int = 200,
58
    backend: str = "gloo",
59
    use_oss: bool = True,
60
    use_sdp: bool = False,
61
62
63
    check_regression: bool = True,
    reference_speed: float = -1.0,
    reference_memory: float = -1.0,
64
    reference_loss: float = -1.0,
65
):
66
    assert not use_sdp or (use_sdp and use_oss), "ShardedDataParallel requires OSS"
67
    # DDP
68
    dist_init(rank=rank, world_size=world_size, backend=backend)
69
70

    # Setup
71
72
73
74
75
76
77
78
79
    torch.cuda.set_device(rank)
    torch.cuda.manual_seed(0)
    torch.manual_seed(0)  # also sets the cuda seed
    np.random.seed(0)

    if backend == "nccl":
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

80
81
    model, dataloader, loss_fn = get_problem(rank, data_size, batch_size)

82
    # Shard the optimizer
83
84
85
86
    optimizer: Optional[torch.optim.Optimizer] = None

    if use_sdp:
        ddp = ShardedDataParallel(
87
88
89
90
            module=model,
            optimizer=OPTIM,
            optimizer_params={"lr": 1e-4, "momentum": 0.9},
            world_size=world_size,
91
            broadcast_buffers=True,
92
93
94
95
96
        )
        ddp.train()
        optimizer = ddp.optimizer
        model = ddp
    else:
97
        model = DDP(model, device_ids=[rank], find_unused_parameters=True)  # type: ignore
98
99
100
101
102
        optimizer = (
            OSS(params=model.parameters(), optim=OPTIM, lr=1e-4, momentum=0.9)
            if use_oss
            else OPTIM(model.parameters(), lr=1e-4, momentum=0.9)
        )
103
104
105

    # Reset the memory use counter
    torch.cuda.reset_peak_memory_stats(rank)
106
107
108
109
110
111
112

    # Dummy training loop
    torch.cuda.synchronize(rank)
    training_start = time.monotonic()
    model.train()

    measurements = []
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
113
    final_loss: Optional[float] = -1.0
114
115
116
117
118
119
120
121
122
123
124
125

    for epoch in range(num_epochs):
        epoch_start = time.monotonic()

        for batch in dataloader:

            def closure():
                model.zero_grad()
                outputs = model(batch["inputs"])
                loss = loss_fn(outputs, batch["label"])
                loss /= world_size
                loss.backward()
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
126

127
128
129
                if use_sdp:
                    ddp.reduce()  # Send the gradients to the appropriate shards

130
131
                return loss

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
132
            final_loss = optimizer.step(closure)
133
134

        epoch_end = time.monotonic()
135
136
137
138
139

        if use_oss:
            # Check the checkpointing in the case of the OSS optimizer
            # Memory usage could spill over from there
            optimizer = cast(OSS, optimizer)
140
            optimizer.consolidate_state_dict()
141
            if dist.get_rank() == 0:
142
                _ = optimizer.state_dict()
143
144
                print("... State dict collected")

145
        measurements.append(data_size / (epoch_end - epoch_start))
146
        if dist.get_rank() == 0:
147
            print(f"Epoch {epoch} - processed {measurements[-1]:.2f} img per sec. Loss {final_loss:.3f}")
148
149
150
151
152
153
154
155
156

    torch.cuda.synchronize(rank)
    training_stop = time.monotonic()
    img_per_sec = data_size / (training_stop - training_start) * num_epochs
    max_memory = torch.cuda.max_memory_allocated(rank) / 2 ** 20

    print(f"[{dist.get_rank()}] : Training done. {img_per_sec:.2f} img per sec overall")
    print(f"[{dist.get_rank()}] : Peak memory {max_memory:.1f}MiB")

157
158
159
160
161
162
    # Compute the mean and average img per second
    mean = sum(measurements) / len(measurements)
    diff = map(lambda x: pow(x - mean, 2.0), measurements)
    std = math.sqrt(sum(diff) / (len(measurements) - 1))
    print(f"[{dist.get_rank()}] : Mean speed: {mean:.2f} +/- {std:.2f}")

163
    if use_oss and check_regression and dist.get_rank() == 0:
164
        assert (mean + 3.0 * std) > reference_speed, "Speed regression detected"
165
        assert max_memory < 1.05 * reference_memory, "Memory use regression detected"
166
167
        assert abs(cast(float, final_loss) - reference_loss) < 1e-3, "Loss regression detected"

168
169
        print("[Regression Test] VALID")

170
171
    dist.destroy_process_group()  # type: ignore

172
173
174

if __name__ == "__main__":

175
176
177
178
179
180
    class OptimType(str, Enum):
        vanilla = "pytorch"
        oss = "oss"
        oss_sdp = "oss_sdp"
        everyone = "everyone"

181
182
183
184
185
186
187
    parser = argparse.ArgumentParser(
        description="Benchmark the optimizer state sharding, on a typical computer vision workload"
    )
    parser.add_argument("--world_size", action="store", default=2, type=int)
    parser.add_argument("--epochs", action="store", default=10, type=int)
    parser.add_argument("--batch_size", action="store", default=32, type=int)
    parser.add_argument("--data_size", action="store", default=512, type=int)
188
    parser.add_argument("--check_regression", action="store_true", default=False)
189
    parser.add_argument("--reference_speed", action="store", default=29.7, type=float)
190
    parser.add_argument("--reference_memory", action="store", default=4475, type=float)
191
192
193
194
    parser.add_argument("--reference_loss", action="store", default=0.866, type=float)
    parser.add_argument(
        "--optim_type", type=OptimType, choices=[o.value for o in OptimType], default=OptimType.everyone
    )
195
    parser.add_argument("--gloo", action="store_true", default=False)
196
197

    args = parser.parse_args()
198
    print(f"Benchmark arguments: {args}")
199

200
    backend = "nccl" if not args.gloo or not torch.cuda.is_available() else "gloo"
201
202

    if args.optim_type == OptimType.vanilla or args.optim_type == OptimType.everyone:
203
204
205
        print("\nBenchmark vanilla optimizer")
        mp.spawn(
            train,
206
207
208
209
210
211
212
213
214
215
            args=(
                args.world_size,
                args.epochs,
                args.batch_size,
                args.data_size,
                backend,
                False,  # OSS
                False,  # SDP
                False,  # no regression check
            ),
216
217
218
219
            nprocs=args.world_size,
            join=True,
        )

220
    if args.optim_type == OptimType.oss or args.optim_type == OptimType.everyone:
221
        print("\nBenchmark OSS with DDP")
222
223
224
225
226
227
228
        mp.spawn(
            train,
            args=(
                args.world_size,
                args.epochs,
                args.batch_size,
                args.data_size,
229
                backend,
230
231
                True,  # OSS
                False,  # SDP
232
233
234
                args.check_regression,
                args.reference_speed,
                args.reference_memory,
235
236
237
238
239
240
241
                args.reference_loss,
            ),
            nprocs=args.world_size,
            join=True,
        )

    if args.optim_type == OptimType.oss_sdp or args.optim_type == OptimType.everyone:
242
        print("\nBenchmark OSS with SDP")
243
244
245
246
247
248
249
250
251
252
        mp.spawn(
            train,
            args=(
                args.world_size,
                args.epochs,
                args.batch_size,
                args.data_size,
                backend,
                True,  # OSS
                True,  # SDP
253
                False,  # FIXME: @lefaudeux - SDP should give the same results
254
255
256
                -1,  # Not checking SDP for speed regression for now, still slower than OSS
                args.reference_memory,
                args.reference_loss,
257
258
259
260
            ),
            nprocs=args.world_size,
            join=True,
        )