CHANGELOG.md 13.9 KB
Newer Older
1
2
3
4
5
6
# Changelog
All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
7
## NEXT - TBD
8
### Fixed
anj-s's avatar
anj-s committed
9
10
11
12
13
- FSDP: We don't attach post backward hooks for params that don't require grad. However in the hook
        triggered after the post backward hook, we assert on the POST_BACKWARD state which can only
        be set in the post backward hook. Modified the assert to account for the fact that the root
        FSDP module can have child modules with params that require grad and it can contain params
        that don't require grad and hence can fail the previous assert. [#761]
14
15
- FSDP: Fixed a bug when multiple backward pass is called within an iteration, parameters' sharding
        state might be incorrect. [#775]
16
17
- activation checkpoint: Ensure outputs of checkpointed modules only require grad if either
                         the input requires grad or if the parameters require grad. [#787]
Min Xu's avatar
Min Xu committed
18
19

### Added
anj-s's avatar
anj-s committed
20
- FSDP: Added support for returning the original names of parameters when `named_parameters` is called on
21
        the module. To retrieve the orginal names of the parameters along with the params, you need to
anj-s's avatar
anj-s committed
22
23
24
        call `named_parameters` under the `summon_full_params` context when using flattened params or original
        params. If you are using original params (i.e flatten_params=False), calling `named_parameters` outside
        of the `summon_full_params` context will still return the original param names along with the local shards. [#755]
25
26
27
28
29
30
31
32
- FSDP: Ensure gradient reduction accumulates into the unsharded gradient tensor
        within a backwards pass. This matters when an FSDP module is called
        multiple times within a forward pass, and reduction is not deferred
        using activation checkpoint forward counters, bucketing or some other
        mechanism. [#784]
- activation checkpoint: Added a context manager to disable checkpoint in case the same wrapped module
                         needs to be checkpointed and not checkpointed in different parts of
                         the module forward pass. [#772]
Min Xu's avatar
Min Xu committed
33
34
35

## [0.4.0] - 2021-07-31
### Fixed
36
37
38
39
40
41
42
- FSDP: fixed final backward callback in certain activation checkpointed cases. Before this fix,
        if a model is activation checkpointed in a certain way, the final backward
        callback can fire incorrectly. That's due to autograd and reentrant backward
        graphs. With this fix, the final callback is always registered on the outer
        most root FSDP instance (i.e. the outer most backward graph), which result
        in reliably firing. This makes FSDP much more robust with respect to different
        models and activation checkpoints. [#753]
Min Xu's avatar
Min Xu committed
43
44

### Added
45
46
47
48
- FSDP: support gradient accumulation without the `no_sync` context. This is useful
        in training with smaller number of GPU with same overall batch size as large
        number of GPUs. Compared with the `no_sync` context, this mode consumes less
        GPU memory but uses more networking bandwidth. [#752]
Min Xu's avatar
Min Xu committed
49

Min Xu's avatar
Min Xu committed
50

Min Xu's avatar
Min Xu committed
51
52
53
54
55
## [0.3.9] - 2021-07-26
### Fixed
- FSDP: fixed metadata saving and shard consolidation for MoE cases. When a model has
        shared parameters or mixture of expert layers, the handling of state dict
        metadata was broken. This release fixes that. [#746]
56
- OSS: fixed the buckets which would stay in fp16 if `broadcast fp16` was required [#751]
anj-s's avatar
anj-s committed
57
58

### Added
Min Xu's avatar
Min Xu committed
59
60
- FSDP: better performance; use `_allgather_base` and `_reduce_scatter_base` when they are
        available from pytorch nightly version (will be in 1.10 releases) [#729]
61
- FSDP: prepared FSDP internals for supporting multiple groups of flatten parameters (to support more general optimization) [#746]
anj-s's avatar
anj-s committed
62
63
64
65
66
67
68
69
70
71

## [0.3.8] - 2021-07-12
### Fixed
- checkpointing: Use dummy tensor to ensure backward pass is called. [#701]
- checkpointing: Ensure internal fwd counter is not incremented in eval mode. [#709]
- checkpointing: Use non-blocking CPU transfer to improve perf. [#719]
- FSDP: Fixed bug where buffers returned in `state_dict()` could still be half precision when `mixed_precision` is set to `True`. [#705]
- FSDP: Ensure requires_grad of FlatParameter is consistent with requires_grad of the original parameters. [#721]
- doc: Thoroughly improved the doc for FSDP. [#711]
- cleanup: Remove examples/ doc from the repo. [#712]
72
- cleanup: Future proof storage size test. [#735]
anj-s's avatar
anj-s committed
73
74
- cleanup: Migrate away from legacy torchtext iterators. [#713]
- chore: Updated torch 1.9 to release version. [#717]
Min Xu's avatar
Min Xu committed
75
76

### Added
77
- FSDP: supporting multiple flatten parameter groups [#708] [#711]
anj-s's avatar
anj-s committed
78
- chore: Add the latest numpy version to requirements-test.txt to prevent mypy errors on certain PR commits [#732]
Min Xu's avatar
Min Xu committed
79
80
81
82
83
84
85

## [0.3.7] - 2021-05-17
### Fixed
- setup.py: hide CUDA extensions behind `BUILD_CUDA_EXTENSIONS` envvar [#634]
- checkpointing: rename and move the `checkpoint_activations` wrapper [#654]
- FSDP: fix `local_state_dict` potentially called child class's `state_dict` [#574]
- FSDP: fix extra process groups being created by default. Old behavior can cause excessive GPU memory usage [#678] [#681]
86
87
88
- FSDP: fix forward pass not overlapping compute and allgather [#671]
- FSDP: improved frozen weight support [#657]
- FSDP: workaround AMP autocast cache issue with `clear_autocast_cache` flag [#650]
Min Xu's avatar
Min Xu committed
89
- FSDP: Rename API arg `cpu_offload` to `move_params_to_cpu` to better reflect functionality. We will deprecate `cpu_offload` in an upcoming release [#676]
90
91
- MoE: several fixes [#666] [#667] [#668]
- SDP: re-expose the module property [#647]
Min Xu's avatar
Min Xu committed
92
- wrap: support wrapping based on `wrapper_config` [#685]
93

94
### Added
95
96
- FSDP: added `force_input_to_fp32` flag for SyncBatchNorm [#659]
- FSDP: better memory usage for reduce bucket [#633]
97
98
- FSDP: added `local_metadata_dict` to save sharding relating information [#683]
- FSDP: added `consolidate_shard_weights` to reconstruct the consolidated (non-sharded) model weights from saved sharded weights and metadata on the disk [#683]
Min Xu's avatar
Min Xu committed
99
- Experimental SyncBatchNorm [#662] [#680]
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
100

Min Xu's avatar
Min Xu committed
101
102
## [0.3.6] - 2021-04-26
### Added
103
- FSDP: Consolidate cpu\_adam optimizer state dict ([#607](https://github.com/facebookresearch/fairscale/pull/607))
Min Xu's avatar
Min Xu committed
104
105
106
107
108
109
110
111
112

### Fixed
- FSDP: handle model with multiple forward pass and checkpoint ([#621](https://github.com/facebookresearch/fairscale/pull/621))
- FSDP & SDP: check before calling `_specify_ddp_gpu_num` ([#626](https://github.com/facebookresearch/fairscale/pull/626))
- FSDP: relax checking root condition ([#620](https://github.com/facebookresearch/fairscale/pull/620))
- SDP: removing an assert which does not seem always accurate ([#625](https://github.com/facebookresearch/fairscale/pull/625))
- FSDP: changing FSDP init to by pass pg validation ([#619](https://github.com/facebookresearch/fairscale/pull/619))
- OSS: to 100% coverage ([#618](https://github.com/facebookresearch/fairscale/pull/618))

Min Xu's avatar
Min Xu committed
113
114
115
116
117
118
119
120
121
122
## [0.3.5] - 2021-04-19
### Added
- [offload] Add API, tutorial and smaller doc string changes. ([#576](https://github.com/facebookresearch/fairscale/pull/576))

### Fixed
- FSDP: fixing training with freezing weights ([#614](https://github.com/facebookresearch/fairscale/pull/614))
- SDP: privatizing all the things ([#611](https://github.com/facebookresearch/fairscale/pull/611))
- FSDP: Make `_get_default_cuda_device` more robust to modules without params ([#606](https://github.com/facebookresearch/fairscale/pull/606))
- OffloadModel: Add prev codepath of using OffloadModel without activation checkpointing ([#608](https://github.com/facebookresearch/fairscale/pull/608))

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
123
## [0.3.4] - 2021-04-13
Min Xu's avatar
Min Xu committed
124
### Added
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
125
126
- FSDP: Add no broadcast optim state option ([#560](https://github.com/facebookresearch/fairscale/pull/560))

Min Xu's avatar
Min Xu committed
127
### Fixed
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
128
129
130
131
132
- ShardedDDP: Properly handle .eval() mode ([#587](https://github.com/facebookresearch/fairscale/pull/587))
- ShardedDDP: Handle model being moved back to CPU prior to state consolidation ([#573](https://github.com/facebookresearch/fairscale/pull/573))
- FSDP: much faster state consolidation ([#595](https://github.com/facebookresearch/fairscale/pull/595))
- FSDP: Add gradient pre-dedivide to prevent overflow with large world sizes ([#565](https://github.com/facebookresearch/fairscale/pull/565))
- Offload: (experimental) Fix activation offloading to CPU ([#588]((https://github.com/facebookresearch/fairscale/pull/588) )
Min Xu's avatar
Min Xu committed
133

Min Xu's avatar
Min Xu committed
134
135
## [0.3.3] - 2021-04-1
### Added
136
- FSDP: changed `auto_wrap_bn` utility function so that single FSDP group is optional ([#556](https://github.com/facebookresearch/fairscale/pull/556))
Min Xu's avatar
Min Xu committed
137
138
139
140
141
142
143
144
- FSDP: optimizer state load/save ([#537](https://github.com/facebookresearch/fairscale/pull/537))
- FSDP: fix weight init when using apply() ([#543](https://github.com/facebookresearch/fairscale/pull/543))
- Multiprocess Pipe: retired old implementation
- Experimental: xpipe

### Fixed
- ShardedDDP deferred init ([#558](https://github.com/facebookresearch/fairscale/pull/558))

Min Xu's avatar
Min Xu committed
145
## [0.3.2] - 2021-03-18
Min Xu's avatar
Min Xu committed
146
### Added
147
- Experimental: Add spectrain support ([#372](https://github.com/facebookresearch/fairscale/issues/372))
Min Xu's avatar
Min Xu committed
148
- FSDP: enabled pytorch SyncBN (no asserting) ([#527](https://github.com/facebookresearch/fairscale/issues/527))
149
- FSDP: added `auto_wrap_bn` utility function ([#531](https://github.com/facebookresearch/fairscale/pull/531))
Min Xu's avatar
Min Xu committed
150
151

### Fixed
152
- OSS: fix a compatibily problem with lightning wrt optimizer state dict ([#510](https://github.com/facebookresearch/fairscale/issues/510))
153
- FSDP: fixed a bug when part of autograd graph is traversed multiple times in mixed precision mode ([#513](https://github.com/facebookresearch/fairscale/pull/513))
Min Xu's avatar
Min Xu committed
154
155
156
157

## [0.3.1] - 2021-03-09
### Added
- FSDP docs ([#455](https://github.com/facebookresearch/fairscale/issues/455))
158
- `enable_wrap` and `auto_wrap` APIs ([#446](https://github.com/facebookresearch/fairscale/issues/446))
Min Xu's avatar
Min Xu committed
159
160
- Added experimental.nn.OffloadModel API for training large models on a single GPU.([#432](https://github.com/facebookresearch/fairscale/issues/432))

161
### Fixed
Min Xu's avatar
Min Xu committed
162
163
164
165
- OSS: fix a broken state dict when using non contiguous param groups
- Several SDP fixes around performance and corner cases
- Many FSDP fixes
- AdaScale & SDP/FSDP test added but not officially supported
166

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
167
## [0.3.0] - 2021-02-22
Min Xu's avatar
Min Xu committed
168
169
### Added
- FullyShardedDataParallel (FSDP) ([#413](https://github.com/facebookresearch/fairscale/issues/413))
170
- ShardedDDP fp16 grad reduction option ([#402](https://github.com/facebookresearch/fairscale/issues/402))
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
171
- Expose experimental algorithms within the pip package ([#410](https://github.com/facebookresearch/fairscale/pull/410))
Min Xu's avatar
Min Xu committed
172

173
### Fixed
Min Xu's avatar
Min Xu committed
174
- Catch corner case when the model is too small with respect to the world size, and shards are empty ([#406](https://github.com/facebookresearch/fairscale/pull/406))
175
- Memory leak in `checkpoint_wrapper` ([#412](https://github.com/facebookresearch/fairscale/pull/412))
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
176
177

## [0.1.7] - 2021-02-19
178
179
### Fixed
- ShardedDDP and OSS handle model trainability changes during training ([#369](https://github.com/facebookresearch/fairscale/issues/369))
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
180
181
182
- ShardedDDP state dict load/save bug ([#386](https://github.com/facebookresearch/fairscale/issues/386))
- ShardedDDP handle train/eval modes ([#393](https://github.com/facebookresearch/fairscale/issues/393))
- AdaScale handling custom scaling factors ([#401](https://github.com/facebookresearch/fairscale/issues/401))
183
184

### Added
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
185
- ShardedDDP manual reduce option for checkpointing ([#389](https://github.com/facebookresearch/fairscale/issues/389))
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
186

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
187
188
189
190
191
192
193
194
195
196
## [0.1.6] - 2021-02-10
### Added
- Checkpointing model wrapper (#376)
- Faster OSS, flatbuffers (#371)
- Small speedup in OSS clipgradnorm (#363)

### Fixed
- Bug in ShardedDDP with 0.1.5 depending the init (KeyError / OSS)
- Much refactoring in Pipe (#357, #358, #360, #362, #370, #373)
- Better pip integration / resident pytorch (#375)
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
197
198

## [0.1.5] - 2021-02-03
199
### Added
200
201
202
- Pytorch compatibility for OSS checkpoints (#310)
- Elastic checkpoints for OSS, world size can vary in between save and loads (#310)
- Tensor views for OSS bucketing, reduced CPU use (#300)
203
- Bucket calls in ShardedDDP, for faster inter node communications (#327)
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
204
205
206
207
208
209
210
- FlattenParamWrapper, which flattens module parameters into a single tensor seamlessly (#317)
- AMPnet experimental support (#304)

### Fixed
- ShardedDDP properly handles device changes via `.to()` (#353)
- Add a new interface for AdaScale, AdaScaleWrapper, which makes it compatible with OSS (#347)

211

212
213
214
215
216
## [0.1.4] - 2021-01-07
### Fixed
- Missing cu files in the pip package


217
218
219
## [0.1.3] - 2021-01-04
### Fixed
- Release numbering within python and from pypi
220

221
## [0.1.2] - 2021-01-04
222
### Added
223
224
- AdaScale:
  . Added gradient accumulation feature (#202)
225
226
227
  . Added support of `torch.lr_scheduler` (#229)
  . Added support for `add_param_groups` (#266)
  . Added support for `scale != world_size` (#266)
228
229

### Fixed
Min Xu's avatar
Min Xu committed
230
231
- AdaScale: smoothing factor value fixed when using gradient accumulation (#235)
- Pipe: documentation on balancing functions (#243)
232
233
234
- ShardedDDP: handle typical NLP models
- ShardedDDP: better partitioning when finetuning

235

236
237
238
239
## [0.1.1] - 2020-12-01
### Fixed
- make sure pip package includes header files (#221)

msbaines's avatar
msbaines committed
240
241
242
243
244
245
## [0.1.0] - 2020-12-01
### Added
- ShardedDataParallel with autoreduce (#157)
- cpu support for Pipe (#188)
- ShardedOptim: Distributed Grad Scaler (for torch AMP)  (#182)
- OSS-aware clip grads, bridge sharded states (#167)
246
- oss: add `rank_local_state_dict` staticmethod (#174)
msbaines's avatar
msbaines committed
247
248
249
250
251
252
- support for PyTorch 1.7.0 (#171)
- Add implementation of AdaScale (#139)

### Fixed
- pip package install (#196, #200)

msbaines's avatar
msbaines committed
253
254
255
256
257
258
259
260
## [0.0.3] - 2020-10-14
### Added
- multi-process pipe

### Fixed
- multiple OSS fixes
- MegaTron+OSS DDP fix

msbaines's avatar
msbaines committed
261
262
## [0.0.2] - 2020-08-28
### Added
263
- add ddp that works with oss with `reduce()` not `all_reduce()` (#19)
msbaines's avatar
msbaines committed
264
265
266
267
268
269
270
271
272
- support for PyTorch v1.6
- add mixed precision Adam (#40)
- Adam optimizer state scaling (#44)

### Fixed
- properly restore a sharded optim state (#39)
- OSS restore state to proper device (#46)
- optim/oss: support optimizers with additional step kwargs (#53)
- optim/oss: fix state cast (#56)
273
- fix eval for `oss_ddp` (#55)
msbaines's avatar
msbaines committed
274
275
276
- optim/oss: work correctly with LRScheduler (#58)

## [0.0.1] - 2020-07-31
277
- Initial release.