grad_scaler.rst 2.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
Sharded Grad Scaler
========================
Enabling PyTorch's automatic mixed precision usually means using a `GradScaler` to detect underflows.
This grad scaler is not aware of the state sharding when Fairscale OSS is involved, and will lead to deadlocks.
Make sure that you use `ShardedGradScaler` in that case, which is a shard-aware wrapper of PyTorch's implementation.

.. code-block:: python

    import torch
    from fairscale.optim.oss import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler
12
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

    def train(
        rank: int,
        world_size: int,
        epochs: int):

        # DDP
        dist_init(rank, world_size)

        # Problem statement
        model = myAwesomeModel().to(rank)
        dataloader = mySuperFastDataloader()
        loss_ln = myVeryRelevantLoss()

        # optimizer specific arguments e.g. LR, momentum, etc...
        base_optimizer_arguments = { "lr": 1e-4}

        # ** NEW ** Wrap a base optimizer into OSS
        base_optimizer = torch.optim.SGD  # any pytorch compliant optimizer
        optimizer = OSS(
            params=model.parameters(),
            optim=base_optimizer,
            **base_optimizer_arguments)

37
38
39
40
        # ** NEW ** Wrap the model into ShardedDDP
        model = ShardedDDP(model, optimizer)

        # ** NEW ** Use a ShardedGradScaler instead of the default Pytorch GradScaler
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        scaler = ShardedGradScaler()

        # Any relevant training loop, nothing specific to OSS. For example:
        model.train()
        for e in range(epochs):
            for (data, target) in dataloader:
                data, target = data.to(rank), target.to(rank)

                # Automatically computes the FW pass in half precision
                with torch.cuda.amp.autocast():
                    model.zero_grad()
                    outputs = model(data)
                    loss = loss_fn(outputs, target)

                # Automatically handle scaled gradients
                scaler.scale(loss).backward()
                optimizer.step()