test_fsdp_shared_weights.py 4.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

""" Test FSDP with shared weights between wrappers. """

from copy import deepcopy

import pytest
import torch
import torch.multiprocessing as mp
from torch.nn import Linear, Module
from torch.optim import SGD

20
from fair_dev.testing.testing import dist_init, objects_are_equal, skip_if_single_gpu, teardown, temp_files_ctx
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP


class Model(Module):
    def __init__(self, with_fsdp=False, inner_flat=False, sharing=None):
        super().__init__()
        self.l0 = Linear(4, 4, bias=True).cuda()
        self.l1 = Linear(4, 4, bias=True).cuda()
        self.l2 = Linear(4, 4, bias=True).cuda()
        self.l3 = Linear(4, 4, bias=True).cuda()

        # share the weights. the layer must have at least 1 param is that's not
        # shared. Therefore, we have bias=True and testing either sharing the
        # weight or the bias.
        if sharing == "share_only_weights":
            self.l1.weight = self.l3.weight
        elif sharing == "share_only_bias":
            self.l1.bias = self.l3.bias
        else:
            assert sharing is None or sharing == "share_none"

        if with_fsdp:
            # Shared layers much be un-flatten.
            self.l1 = FSDP(self.l1, flatten_parameters=False)
            self.l2 = FSDP(self.l2, flatten_parameters=inner_flat)
            self.l3 = FSDP(self.l3, flatten_parameters=False)

            if sharing in ["share_only_weights"]:
                self.l3.append_shared_param(self.l1.module.weight)
            if sharing in ["share_only_bias"]:
                self.l3.append_shared_param(self.l1.module.bias)

    def forward(self, x):
        x = self.l0(x)
        x = self.l1(x)
        x = self.l2(x)
        x = self.l3(x)
        return x


# A fixture to get tempfiles and ensure they are cleaned up.
@pytest.fixture()
def temp_files():
    # dist_init needs 2 files + 3 files for before state, after state, in_data.
    with temp_files_ctx(5) as files:
        yield files


@skip_if_single_gpu
@pytest.mark.parametrize("outer_flat", ["outer_flat", "outer_nonflat"])
@pytest.mark.parametrize("inner_flat", ["inner_flat", "inner_nonflat"])
@pytest.mark.parametrize("sharing", ["share_none", "share_only_weights", "share_only_bias"])
def test_shared_weight(temp_files, outer_flat, inner_flat, sharing):
    """Test FSDP with a model with shared weights."""

    outer_flat = outer_flat == "outer_flat"
    inner_flat = inner_flat == "inner_flat"
    world_size = 2

    # Get reference results.
    model = Model(sharing=sharing)
    sd_before = deepcopy(model.state_dict())
    in_data = torch.rand(1, 4).cuda()
    _train(model, in_data, world_size)
    sd_after = deepcopy(model.state_dict())
    # Before and after state should not be equal.
    assert not objects_are_equal(sd_before, sd_after)

    # Save data
    torch.save(sd_before, temp_files[2])
    torch.save(sd_after, temp_files[3])
    torch.save(in_data, temp_files[4])

    # Run FSDP
    mp.spawn(
96
97
98
        _dist_worker,
        (world_size, temp_files, outer_flat, inner_flat, sharing),
        nprocs=world_size,
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    )


def _dist_worker(rank, world_size, files, outer_flat, inner_flat, sharing):

    # Get data from files.
    file1, file2, sd_before, sd_after, in_data = files
    sd_before = torch.load(sd_before, map_location=lambda storage, loc: storage.cuda(rank))
    sd_after = torch.load(sd_after, map_location=lambda storage, loc: storage.cuda(rank))
    in_data = torch.load(in_data, map_location=lambda storage, loc: storage.cuda(rank))

    result = dist_init(rank=rank, world_size=world_size, filename=file1, filename_rpc=file2)
    assert result, "Dist init failed"

    fsdp_model = FSDP(Model(with_fsdp=True, inner_flat=inner_flat, sharing=sharing), flatten_parameters=outer_flat)
    fsdp_model.load_state_dict(sd_before)

    _train(fsdp_model, in_data)

    objects_are_equal(sd_after, fsdp_model.state_dict(), raise_exception=True)

    teardown()


def _train(model, in_data, steps_per_iter=1):
    optim = SGD(model.parameters(), lr=0.1)
    for _ in range(3):
        # Simulate multiple ranks.
        for _ in range(steps_per_iter):
            out = model(in_data)
            out.sum().backward()
        # Simulate gradient means between ranks.
        if steps_per_iter > 1:
            with torch.no_grad():
                for p in model.parameters():
                    p.grad /= steps_per_iter
        optim.step()
        model.zero_grad(set_to_none=True)