test_sharded_ddp_features.py 17.4 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing ShardedDDP
8
9
"""

10
from contextlib import suppress
11
12
import tempfile

13
import numpy as np
14
import pytest
15
16
17
18
19
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import Linear, Sequential

20
from fairscale.nn.data_parallel import ShardedDataParallel
21
from fairscale.optim import OSS
22
23
from fairscale.utils.testing import (
    GPT2,
24
    SGDWithPausingCompute,
25
26
27
    available_devices,
    check_same_models_across_ranks,
    skip_if_less_than_four_gpu,
28
29
30
    skip_if_no_cuda,
    skip_if_single_gpu,
)
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _get_mlp(tripwire: bool = False):
    if not tripwire:
        return Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))

    class Tripwire(torch.nn.Module):
        """A model made to expose possible corner cases
        """

        def __init__(self) -> None:
            super().__init__()
            self.model = Linear(2, 3, bias=False)

            # mismatched types in between trainable or not, can trip the buckets for instance
            self.register_parameter("tripwire", torch.nn.Parameter(torch.LongTensor((3, 3)), requires_grad=False))

        def forward(self, x):
            return self.model(x)

    return Tripwire()
52
53
54
55
56
57
58
59
60
61
62
63
64
65


class _DoubleInput(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = _get_mlp()

    def forward(self, x, y):
        x1 = self.mlp(x)
        x2 = self.mlp(y)
        return torch.cat((x1, x2), dim=1)


def run_one_step(
66
67
68
69
70
71
72
73
74
    rank,
    world_size,
    backend,
    device,
    temp_file_name,
    broadcast_buffers,
    grad_accumulation,
    reduce_buffer_size,
    optimizer_type,
75
76
):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
77
78
79
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

80
81
82
    torch.manual_seed(rank)
    np.random.seed(rank)

83
84
85
86
87
88
    # Any model works. Add one different buffer per rank
    model = _get_mlp()
    model.register_buffer("test_buffer", torch.ones((1)) * rank)
    model.to(device)

    next(model.parameters()).requires_grad = False  # Test non-trainable parameters
89

90
91
92
93
94
    optimizer_settings = {"lr": 1e-3, "momentum": 0.99}
    if optimizer_type == SGDWithPausingCompute:
        optimizer_settings["rank"] = rank

    optimizer = OSS(params=model.parameters(), optim=optimizer_type, **optimizer_settings)
95
96
97
    ddp_model = ShardedDataParallel(
        model, optimizer, broadcast_buffers=broadcast_buffers, reduce_buffer_size=reduce_buffer_size
    )
98

99
100
101
102
    # The model should be synchronized in between the ranks at ShardedDataParallel construction time, check that
    check_same_models_across_ranks(
        ddp_model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=broadcast_buffers
    )
103

104
105
106
107
108
109
110
111
112
113
114
115
116
    # Optim loop
    def closure():
        optimizer.zero_grad()

        with ddp_model.no_sync() if grad_accumulation else suppress():
            input_tensor = torch.rand((64, 2)).to(device)
            loss = ddp_model(input_tensor).abs().sum()
            loss.backward()
        return loss

    # The models should stay the same in between the ranks
    for i in range(5):
        _ = optimizer.step(closure=closure)
117
118
119
120
121

        # For a sync of all the streams
        if device.type == torch.device("cuda").type:
            torch.cuda.synchronize(device=device)

122
        # when running on cpu/gloo the "nodes" are not really different
123
        same_params = device == torch.device("cpu") or not grad_accumulation
124
125
126
        check_same_models_across_ranks(
            ddp_model, dist.group.WORLD, params_should_be_equal=same_params, check_broadcast_buffers=broadcast_buffers
        )
127

128
129
    dist.destroy_process_group()

130

131
def run_test(backend, device, world_size, broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type):
132
    temp_file_name = tempfile.mkstemp()[1]
133
134
135
136
137
138
    mp.spawn(
        run_one_step,
        args=(world_size, backend, device, temp_file_name, broadcast_buffers, grad_accumulation, reduce_buffer_size),
        nprocs=world_size,
        join=True,
    )
Min Xu's avatar
Min Xu committed
139
140


141
142
@skip_if_no_cuda
@skip_if_single_gpu
143
144
145
@pytest.mark.parametrize("broadcast_buffers", [True, False])
@pytest.mark.parametrize("grad_accumulation", [True, False])
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
146
147
148
149
150
151
152
153
154
155
@pytest.mark.parametrize("optimizer_type", [torch.optim.SGD, SGDWithPausingCompute])
@pytest.mark.parametrize(
    "setup",
    [
        [dist.Backend.NCCL, torch.device("cuda")],
        [dist.Backend.GLOO, torch.device("cpu")],
        [dist.Backend.GLOO, torch.device("cuda")],
    ],
)
def test_step(broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type, setup):
156
    world_size = 2
157
    temp_file_name = tempfile.mkstemp()[1]
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
    mp.spawn(
        run_one_step,
        args=(
            world_size,
            setup[0],
            setup[1],
            temp_file_name,
            broadcast_buffers,
            grad_accumulation,
            reduce_buffer_size,
            optimizer_type,
        ),
        nprocs=world_size,
        join=True,
173
    )
174
175


176
177
178
def run_test_two_inputs(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    if device == "cuda":
179
180
181
182
183
184
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)

    model = _DoubleInput().to(device)
185
186
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, reduce_buffer_size=reduce_buffer_size)
187
188
189
190
191
192
193
194
195
196
197

    # Optim loop
    def closure():
        optimizer.zero_grad()
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
        _ = optimizer.step(closure=closure)
Min Xu's avatar
Min Xu committed
198

199
200
    dist.destroy_process_group()

Min Xu's avatar
Min Xu committed
201

202
203
204
205
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
@pytest.mark.parametrize("device", available_devices)
def test_inputs(reduce_buffer_size, backend, device):
206
207
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
208
209
210
211
212
213
214
215
216
217
    if backend == "nccl" and device == "cpu":
        pytest.skip("Incompatible combination, or cuda not available")
        return

    mp.spawn(
        run_test_two_inputs,
        args=(world_size, backend, device, tempfile.mkstemp()[1], reduce_buffer_size),
        nprocs=world_size,
        join=True,
    )
218
219
220
221
222
223


def test_ddp_attributes():
    # Check that ShardedDDP exposes the same attributes as Pytorch's DDP
    # - is multi_device_module
    # - device_type
224
    dist.init_process_group(init_method="file://" + tempfile.mkstemp()[1], backend="gloo", rank=0, world_size=1)
225
226

    model = Sequential(Linear(2, 3), Linear(3, 3))
227
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
228
229
230
231
232
233
234
    ddp_model = ShardedDataParallel(model, optimizer)

    assert hasattr(ddp_model, "is_multi_device_module")
    assert hasattr(ddp_model, "device_type")
    dist.destroy_process_group()


235
236
def test_random_attributes():
    # Check that ShardedDDP exposes the original module's attributes
237
    dist.init_process_group(init_method="file://" + tempfile.mkstemp()[1], backend="gloo", rank=0, world_size=1)
238
239
240
241

    model = Sequential(Linear(2, 3), Linear(3, 3))
    model.banana = "sweet"

242
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
243
244
245
246
247
248
249
250
    ddp_model = ShardedDataParallel(model, optimizer)

    assert hasattr(ddp_model, "banana")
    assert not hasattr(ddp_model, "orange")

    dist.destroy_process_group()


251
252
253
254
255
256
257
258
259
260
261
262
263
264
def test_mixed_types():
    # Check that ShardedDDP exposes the original module's attributes
    dist.init_process_group(init_method="file://" + tempfile.mkstemp()[1], backend="gloo", rank=0, world_size=1)

    model = _get_mlp(tripwire=True)

    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    model = ShardedDataParallel(model, optimizer)
    input_tensor = torch.rand((2, 2))
    _ = model(input_tensor)

    dist.destroy_process_group()


265
def run_test_device_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
266
    # Check that the wrapped module can change devices
267
268
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)
269

270
271
272
273
274
275
276
277
278
279
    model = Sequential(Linear(2, 3), Linear(3, 3)).cpu()  # not device on purpose, test changing it after the fact
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(
        model, optimizer, sync_models_at_startup=False, reduce_buffer_size=reduce_buffer_size
    )
    try:
        ddp_model.to(device)
        assert False, "Changing devices should be caught and not supported"
    except AssertionError:
        pass
280
281
282
283
284
285

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
286
287
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_device_change(reduce_buffer_size):
288
    # Check that ShardedDDP handles a device change properly
289
    world_size = 2
290
    backend = "nccl"
291
292
    temp_file_name = tempfile.mkstemp()[1]
    device = "cuda"
293
294
295
296
297
298
    mp.spawn(
        run_test_device_change,
        args=(world_size, backend, device, temp_file_name, reduce_buffer_size),
        nprocs=world_size,
        join=True,
    )
299
300


301
302
303
304
305
306
def run_test_training_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    group = dist.init_process_group(
        init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size
    )
    torch.cuda.set_device(rank)

307
    model = Sequential(Linear(2, 3), Linear(3, 3)).to(device)
308
309
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, process_group=group, reduce_buffer_size=reduce_buffer_size)
310
311
312
313
314
315
316
317
318
319
320
321

    inputs = torch.rand((10, 2), device=device)
    outputs = ddp_model(inputs)  # assert if the module has not been changed properly
    _ = outputs.norm().backward()

    ddp_model.eval()
    ddp_model(inputs)  # This will assert if eval() is not properly taken into account
    ddp_model(inputs)

    dist.destroy_process_group()


322
323
324
325
326
327
@skip_if_no_cuda
@skip_if_single_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_training_change(reduce_buffer_size):
    world_size = 2
    backend = "nccl"
328
    temp_file_name = tempfile.mkstemp()[1]
329
330
331
332
333
334
335
    device = "cuda"
    mp.spawn(
        run_test_training_change,
        args=(world_size, backend, device, temp_file_name, reduce_buffer_size),
        nprocs=world_size,
        join=True,
    )
336
337


338
def run_test_ddp_sync_batch_norm(rank, world_size, backend, device, temp_file_name):
339
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
340
341
342

    model = Sequential(Linear(2, 3), torch.nn.BatchNorm1d(3), Linear(3, 3)).to(device)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
343
344
    model.to(device)  # in pytorch 1.5 syncBN switches to the default device/cpu

345
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    ddp_model = ShardedDataParallel(model, optimizer)

    assert isinstance(model[1], torch.nn.SyncBatchNorm)
    # Ensures sync batch norm handles have been added
    ddp_model(torch.randn(2, 2).to(device))
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_sync_batch_norm():
    # Check that ShardedDDP is compatible with sync batch norm across multiple GPUs
    world_size = 2
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cuda"
    mp.spawn(
363
        run_test_ddp_sync_batch_norm, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True
364
365
366
    )


367
def run_test_two_optimizers(rank, world_size, backend, device, temp_file_name):
368
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
369
370
371
372
373
374
375
376
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = _DoubleInput().to(device)

    parameters = list(model.parameters())
377
378
    optimizer_1 = OSS(params=parameters[:-10], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    optimizer_2 = OSS(params=parameters[-10:], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
379
380
381
382
383
384
385
386
387
388
    ddp_model = ShardedDataParallel(model, [optimizer_1, optimizer_2])

    # Optim loop
    def closure():
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
389
390
391
392
393
        optimizer_1.zero_grad()
        optimizer_2.zero_grad()

        _ = optimizer_1.step(closure=closure)
        _ = optimizer_2.step(closure=closure)
394
395
396
397
398
399
400
401
402
403

    dist.destroy_process_group()


def test_two_optimizers():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cpu"
404
405
406
407
    mp.spawn(run_test_two_optimizers, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)


def run_test_gpt2(rank, world_size, backend, device, temp_file_name):
408
    INPUT_DIM = 16
409
410
411
412
413
    BACH_SIZE = 10
    STEPS = 10

    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
414
    torch.cuda.set_device(rank)
415
416
417
418

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = GPT2(
419
        embed_dim=256, num_heads=2, num_layers=12, num_positions=INPUT_DIM * INPUT_DIM, num_vocab=512, num_classes=2
420
    )
421
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
422
    ddp_model = ShardedDataParallel(model, optimizer)
423

424
425
426
    # Move the model to another device post-construction
    model = model.to(device)

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    # Optim loop
    def closure():
        optimizer.zero_grad()
        # Force int inputs to prevent the first grad from firing
        input_tensor = torch.randint(10, (BACH_SIZE, INPUT_DIM)).to(device)
        loss = ddp_model(input_tensor).abs().sum()
        loss.backward()
        return loss

    # Check for bucketing overflows
    for i in range(STEPS):
        _ = optimizer.step(closure=closure)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
445
446
447
@pytest.mark.parametrize("world_size", [1, 2])
def test_gpt2(world_size):
    # Check that having trainable unused params is fine
448
449
450
451
    backend = "gloo"
    temp_file_name = tempfile.mkstemp()[1]
    device = "cuda"
    mp.spawn(run_test_gpt2, args=(world_size, backend, device, temp_file_name), nprocs=world_size, join=True)
452
453


454
def run_test_multiple_groups(rank, world_size, tempfile_name, backend, reduce_buffer_size):
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    # Only work with the even ranks, to check that the global_rank indexing is properly used
    dist.init_process_group(init_method="file://" + tempfile_name, backend=backend, rank=rank, world_size=world_size)

    sub_group_ranks = [0, 2]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend=backend)

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cuda"
    torch.cuda.set_device(rank)

    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer, model):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss.backward()
                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
489
490
491
            check_same_models_across_ranks(
                model, process_group, params_should_be_equal=True, check_broadcast_buffers=True
            )
492
493
494
495
496
497
498
499

    if rank in sub_group_ranks:
        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
500
501
502
503
        optimizer = OSS(model.parameters(), group=process_group, lr=1e-3, momentum=0.99)
        model = ShardedDataParallel(
            model, optimizer, process_group=process_group, reduce_buffer_size=reduce_buffer_size
        )
504
505
506
507
508
        check(optimizer, model)

    dist.destroy_process_group(process_group)


509
510
511
512
@skip_if_less_than_four_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_multiple_groups(reduce_buffer_size, backend):
513
514
515
516
    world_size = 4
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(
517
518
519
520
        run_test_multiple_groups,
        args=(world_size, temp_file_name, backend, reduce_buffer_size),
        nprocs=world_size,
        join=True,
521
    )