test_stash_pop.py 3.43 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn

from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.tracker import SkipTracker, use_skip_tracker


@pytest.fixture(autouse=True)
def skip_tracker():
    skip_tracker = SkipTracker()
    with use_skip_tracker(skip_tracker):
        yield skip_tracker


def test_stash(skip_tracker):
    @skippable(stash=["foo"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("foo", input)
            return input * 2

    l1 = Stash()

    assert len(skip_tracker.tensors) == 0

    with use_skip_tracker(skip_tracker):
        l1(torch.tensor(42))

    assert len(skip_tracker.tensors) == 1


def test_pop():
    @skippable(stash=["foo"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("foo", input)
            return input * 2

    @skippable(pop=["foo"])
    class Pop(nn.Module):
        def forward(self, input):
            foo = yield pop("foo")
            return foo

    l1 = Stash()
    l2 = Pop()

    output = l2(l1(torch.tensor(42)))

    assert output.item() == 42


def test_declare_but_not_use():
    @skippable(stash=["foo"])
    class Stash(nn.Module):
        def forward(self, input):
            return input * 2

    @skippable(pop=["foo"])
    class Pop(nn.Module):
        def forward(self, input):
            return input * 3

    l1 = Stash()
    l2 = Pop()

    with pytest.raises(RuntimeError):
        l1(torch.tensor(42))

    with pytest.raises(RuntimeError):
        l2(torch.tensor(42))


def test_stash_not_declared():
    @skippable()
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("foo", input)
            return input * 2

    l1 = Stash()

    with pytest.raises(RuntimeError):
        l1(torch.tensor(42))


def test_pop_not_declared():
    @skippable(stash=["foo"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("foo", input)
            return input * 2

    @skippable()
    class Pop(nn.Module):
        def forward(self, input):
            foo = yield pop("foo")
            return foo

    l1 = Stash()
    l2 = Pop()

    latent = l1(torch.tensor(42))

    with pytest.raises(RuntimeError):
        l2(latent)


def test_pop_not_stashed():
    @skippable(pop=["foo"])
    class Pop(nn.Module):
        def forward(self, input):
            yield pop("foo")

    l1 = Pop()

    with pytest.raises(RuntimeError):
        l1(torch.tensor(42))


def test_stash_none():
    @skippable(stash=["foo"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("foo", None)
            return input * 2

    l1 = Stash()
    l1(torch.tensor(42))