Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
c1da9dc9
"...git@developer.sourcefind.cn:OpenDAS/pytorch-encoding.git" did not exist on "a4d71e75a9ec73c7713d061612894efd25f29073"
Commit
c1da9dc9
authored
Oct 18, 2015
by
Davis King
Browse files
Fixed some warnings and errors from visual studio 2015
parent
78109ac9
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
9 additions
and
9 deletions
+9
-9
dlib/dnn/core.h
dlib/dnn/core.h
+2
-2
dlib/dnn/loss.h
dlib/dnn/loss.h
+2
-2
dlib/dnn/trainer.h
dlib/dnn/trainer.h
+5
-5
No files found.
dlib/dnn/core.h
View file @
c1da9dc9
...
@@ -876,7 +876,7 @@ namespace dlib
...
@@ -876,7 +876,7 @@ namespace dlib
"The loss layer and input layer must agree on the sample_expansion_factor."
);
"The loss layer and input layer must agree on the sample_expansion_factor."
);
add_loss_layer
()
=
default
;
add_loss_layer
()
{}
;
add_loss_layer
(
const
add_loss_layer
&
)
=
default
;
add_loss_layer
(
const
add_loss_layer
&
)
=
default
;
add_loss_layer
(
add_loss_layer
&&
)
=
default
;
add_loss_layer
(
add_loss_layer
&&
)
=
default
;
add_loss_layer
&
operator
=
(
add_loss_layer
&&
)
=
default
;
add_loss_layer
&
operator
=
(
add_loss_layer
&&
)
=
default
;
...
@@ -1478,7 +1478,7 @@ namespace dlib
...
@@ -1478,7 +1478,7 @@ namespace dlib
// ==================================================================
// ==================================================================
// first validate the way the parameter gradients are computed
// first validate the way the parameter gradients are computed
for
(
long
i
=
0
;
i
<
params_grad
.
size
();
++
i
)
for
(
unsigned
long
i
=
0
;
i
<
params_grad
.
size
();
++
i
)
{
{
layer_details_type
l1
(
l
);
layer_details_type
l1
(
l
);
...
...
dlib/dnn/loss.h
View file @
c1da9dc9
...
@@ -35,7 +35,7 @@ namespace dlib
...
@@ -35,7 +35,7 @@ namespace dlib
DLIB_CASSERT
(
output_tensor
.
num_samples
()
%
sample_expansion_factor
==
0
,
""
);
DLIB_CASSERT
(
output_tensor
.
num_samples
()
%
sample_expansion_factor
==
0
,
""
);
const
float
*
out_data
=
output_tensor
.
host
();
const
float
*
out_data
=
output_tensor
.
host
();
for
(
unsigned
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
{
{
*
iter
++
=
out_data
[
i
];
*
iter
++
=
out_data
[
i
];
}
}
...
@@ -67,7 +67,7 @@ namespace dlib
...
@@ -67,7 +67,7 @@ namespace dlib
double
loss
=
0
;
double
loss
=
0
;
const
float
*
out_data
=
output_tensor
.
host
();
const
float
*
out_data
=
output_tensor
.
host
();
float
*
g
=
grad
.
host
();
float
*
g
=
grad
.
host
();
for
(
unsigned
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
{
{
const
float
y
=
*
truth
++
;
const
float
y
=
*
truth
++
;
DLIB_CASSERT
(
y
==
+
1
||
y
==
-
1
,
"y: "
<<
y
);
DLIB_CASSERT
(
y
==
+
1
||
y
==
-
1
,
"y: "
<<
y
);
...
...
dlib/dnn/trainer.h
View file @
c1da9dc9
...
@@ -123,7 +123,7 @@ namespace dlib
...
@@ -123,7 +123,7 @@ namespace dlib
{
{
running_stats
<
double
>
rs
;
running_stats
<
double
>
rs
;
unsigned
long
j
=
0
;
size_t
j
=
0
;
// Load two tensors worth of data at once so we can overlap the computation
// Load two tensors worth of data at once so we can overlap the computation
// and data transfer between the host and the device.
// and data transfer between the host and the device.
...
@@ -140,7 +140,7 @@ namespace dlib
...
@@ -140,7 +140,7 @@ namespace dlib
j
+=
mini_batch_size
;
j
+=
mini_batch_size
;
}
}
unsigned
long
i
=
0
;
size_t
i
=
0
;
using
namespace
std
::
chrono
;
using
namespace
std
::
chrono
;
auto
last_time
=
system_clock
::
now
();
auto
last_time
=
system_clock
::
now
();
while
(
i
<
data
.
size
())
while
(
i
<
data
.
size
())
...
@@ -211,7 +211,7 @@ namespace dlib
...
@@ -211,7 +211,7 @@ namespace dlib
for
(
unsigned
long
epoch_iteration
=
0
;
epoch_iteration
<
num_epochs
;
++
epoch_iteration
)
for
(
unsigned
long
epoch_iteration
=
0
;
epoch_iteration
<
num_epochs
;
++
epoch_iteration
)
{
{
running_stats
<
double
>
rs
;
running_stats
<
double
>
rs
;
unsigned
long
j
=
0
;
size_t
j
=
0
;
// Load two tensors worth of data at once so we can overlap the computation
// Load two tensors worth of data at once so we can overlap the computation
// and data transfer between the host and the device.
// and data transfer between the host and the device.
...
@@ -228,7 +228,7 @@ namespace dlib
...
@@ -228,7 +228,7 @@ namespace dlib
j
+=
mini_batch_size
;
j
+=
mini_batch_size
;
}
}
unsigned
long
i
=
0
;
size_t
i
=
0
;
using
namespace
std
::
chrono
;
using
namespace
std
::
chrono
;
auto
last_time
=
system_clock
::
now
();
auto
last_time
=
system_clock
::
now
();
while
(
i
<
data
.
size
())
while
(
i
<
data
.
size
())
...
@@ -318,7 +318,7 @@ namespace dlib
...
@@ -318,7 +318,7 @@ namespace dlib
}
}
unsigned
long
num_epochs
;
unsigned
long
num_epochs
;
unsigned
long
mini_batch_size
;
size_t
mini_batch_size
;
bool
verbose
;
bool
verbose
;
net_type
net
;
net_type
net
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment