Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
b0e3c360
Commit
b0e3c360
authored
Dec 04, 2019
by
Davis King
Browse files
deleted old, wrong, and duplicative function docs
parent
e88e166e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
128 deletions
+0
-128
dlib/cuda/cudnn_dlibapi.h
dlib/cuda/cudnn_dlibapi.h
+0
-128
No files found.
dlib/cuda/cudnn_dlibapi.h
View file @
b0e3c360
...
...
@@ -73,23 +73,6 @@ namespace dlib
float
alpha
,
const
tensor
&
src
);
/*!
requires
- One of the following is true:
- have_same_dimensions(src, dest)
- src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1
- src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()
- src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()
- is_same_object(src,dest) == false
ensures
- performs: dest = beta*dest + alpha*src
However, how the addition happens depends on the dimensions of src. In
particular, this function adds the scaled values of one src tensor to
dest. Each dimension of the src tensor must match the corresponding
dimension of the dest tensor or must be equal to 1. In the latter case,
the same value from the src tensor, for those dimensions, will be used to
add into the dest tensor.
!*/
// ------------------------------------------------------------------------------------
...
...
@@ -97,22 +80,6 @@ namespace dlib
tensor
&
grad
,
const
tensor
&
gradient_input
);
/*!
requires
- grad.num_samples() == 1
- grad.k() >= 1
- grad.nr() == 1
- grad.nc() == 1
- gradient_input.k() == grad.k()
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with all dimensions equal to 1 except for k which is >= 1.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
assigns it to grad.
!*/
// ------------------------------------------------------------------------------------
...
...
@@ -352,39 +319,12 @@ namespace dlib
tensor
&
dest
,
const
tensor
&
src
);
/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- Note that the softmax function is a vector valued function:
s(x) == exp(x)/sum(exp(x))
- Computes the softmax function on src and writes the results to dest. The
softmax is computed per spatial location across the different channels at
each location. That is, softmax() outputs a new tensor, #dest, where
each of the spatial locations in dest (i.e. image idx, row idx, and
column idx) contains the output of s() evaluated over the channel values
at each location.
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
softmax_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
gradient_input
);
/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
- is_same_object(grad, dest)==false
ensures
- We interpret dest as the output of softmax(dest,SRC) for some SRC tensor.
Then let f(SRC) == dot(gradient_input,dest) Then this function computes
the gradient of f() with respect to SRC and assigns it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ------------------------------------------------------------------------------------
...
...
@@ -405,34 +345,12 @@ namespace dlib
tensor
&
dest
,
const
tensor
&
src
);
/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == 1/(1+std::exp(-src.host()[i]))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
sigmoid_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
gradient_input
);
/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of sigmoid(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to SRC and
assigns it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ------------------------------------------------------------------------------------
...
...
@@ -440,34 +358,12 @@ namespace dlib
tensor
&
dest
,
const
tensor
&
src
);
/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == std::max(0,src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
relu_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
gradient_input
);
/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of relu(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to SRC and
assigns it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ------------------------------------------------------------------------------------
...
...
@@ -475,36 +371,12 @@ namespace dlib
tensor
&
dest
,
const
tensor
&
src
);
/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == std::tanh(src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/
void
tanh_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
gradient_input
);
/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
- is_same_object(grad,dest) == false
ensures
- Recalling that dest is the output of tanh(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to SRC and
assigns it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/
// ------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment