Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
8062663c
Commit
8062663c
authored
Dec 08, 2015
by
Davis King
Browse files
Added cpu version of add() and also added new add_bias_gradient() function.
parent
20d46fc5
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
123 additions
and
3 deletions
+123
-3
dlib/dnn/cpu_dlib.cpp
dlib/dnn/cpu_dlib.cpp
+71
-0
dlib/dnn/cpu_dlib.h
dlib/dnn/cpu_dlib.h
+12
-0
dlib/dnn/tensor_tools.cpp
dlib/dnn/tensor_tools.cpp
+17
-2
dlib/dnn/tensor_tools.h
dlib/dnn/tensor_tools.h
+23
-1
No files found.
dlib/dnn/cpu_dlib.cpp
View file @
8062663c
...
...
@@ -68,6 +68,77 @@ namespace dlib
}
}
void
add
(
float
beta
,
tensor
&
dest
,
float
alpha
,
const
tensor
&
src
)
{
DLIB_CASSERT
(
(
dest
.
num_samples
()
==
src
.
num_samples
()
||
src
.
num_samples
()
==
1
)
&&
(
dest
.
nr
()
==
src
.
nr
()
||
src
.
nr
()
==
1
)
&&
(
dest
.
nc
()
==
src
.
nc
()
||
src
.
nc
()
==
1
)
&&
(
dest
.
k
()
==
src
.
k
()
||
src
.
k
()
==
1
)
&&
is_same_object
(
src
,
dest
)
==
false
,
""
);
if
(
beta
==
0
&&
alpha
==
0
)
{
dest
=
0
;
return
;
}
auto
d
=
dest
.
host
();
auto
s
=
src
.
host
();
for
(
long
n
=
0
;
n
<
dest
.
num_samples
();
++
n
)
{
const
auto
sn
=
src
.
num_samples
()
==
1
?
0
:
n
;
for
(
long
k
=
0
;
k
<
dest
.
k
();
++
k
)
{
const
auto
sk
=
src
.
k
()
==
1
?
0
:
k
;
for
(
long
r
=
0
;
r
<
dest
.
nr
();
++
r
)
{
const
auto
sr
=
src
.
nr
()
==
1
?
0
:
r
;
for
(
long
c
=
0
;
c
<
dest
.
nc
();
++
c
)
{
const
auto
sc
=
src
.
nc
()
==
1
?
0
:
c
;
const
auto
s_idx
=
((
sn
*
src
.
k
()
+
sk
)
*
src
.
nr
()
+
sr
)
*
src
.
nc
()
+
sc
;
*
d
=
beta
*
(
*
d
)
+
alpha
*
s
[
s_idx
];
++
d
;
}
}
}
}
}
// ----------------------------------------------------------------------------------------
void
add_bias_gradient
(
tensor
&
grad
,
const
tensor
&
gradient_input
)
{
DLIB_CASSERT
(
grad
.
num_samples
()
==
1
&&
gradient_input
.
k
()
==
grad
.
k
()
&&
gradient_input
.
nr
()
==
grad
.
nr
()
&&
gradient_input
.
nc
()
==
grad
.
nc
()
&&
gradient_input
.
size
()
>
0
,
""
);
auto
out
=
grad
.
host
();
auto
in
=
gradient_input
.
host
();
for
(
size_t
i
=
0
;
i
<
grad
.
size
();
++
i
)
out
[
i
]
=
*
in
++
;
for
(
long
i
=
1
;
i
<
gradient_input
.
num_samples
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
grad
.
size
();
++
i
)
out
[
i
]
+=
*
in
++
;
}
}
// -----------------------------------------------------------------------------------
void
affine_transform
(
...
...
dlib/dnn/cpu_dlib.h
View file @
8062663c
...
...
@@ -26,6 +26,18 @@ namespace dlib
const
tensor
&
src2
);
void
add
(
float
beta
,
tensor
&
dest
,
float
alpha
,
const
tensor
&
src
);
void
add_bias_gradient
(
tensor
&
grad
,
const
tensor
&
gradient_input
);
// -----------------------------------------------------------------------------------
void
affine_transform
(
...
...
dlib/dnn/tensor_tools.cpp
View file @
8062663c
...
...
@@ -259,8 +259,7 @@ namespace dlib { namespace tt
#ifdef DLIB_USE_CUDA
cuda
::
add
(
beta
,
dest
,
alpha
,
src
);
#else
// TODO
DLIB_CASSERT
(
false
,
""
);
cpu
::
add
(
beta
,
dest
,
alpha
,
src
);
#endif
}
...
...
@@ -279,6 +278,22 @@ namespace dlib { namespace tt
#endif
}
// ----------------------------------------------------------------------------------------
void
add_bias_gradient
(
tensor
&
grad
,
const
tensor
&
gradient_input
)
{
#ifdef DLIB_USE_CUDA
// TODO
DLIB_CASSERT
(
false
,
""
);
//cuda::add_bias_gradient(grad,gradient_input);
#else
cpu
::
add_bias_gradient
(
grad
,
gradient_input
);
#endif
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
dlib/dnn/tensor_tools.h
View file @
8062663c
...
...
@@ -406,7 +406,29 @@ namespace dlib { namespace tt
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with all dimensions equal to 1 except for k which is >= 1.
- let BIAS be a tensor with the same dimensions as grad.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
assigns it to grad.
!*/
// ----------------------------------------------------------------------------------------
void
add_bias_gradient
(
tensor
&
grad
,
const
tensor
&
gradient_input
);
/*!
requires
- grad.num_samples() == 1
- gradient_input.k() == grad.k()
- gradient_input.nr() == grad.nr()
- gradient_input.nc() == grad.nc()
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with the same dimensions as grad.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment