Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
2ed6ae1b
Unverified
Commit
2ed6ae1b
authored
Jan 24, 2022
by
Adrià Arrufat
Committed by
GitHub
Jan 23, 2022
Browse files
Eliminate grid sensitivity in YOLO (#2488)
parent
3da3e811
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
31 deletions
+32
-31
dlib/dnn/loss.h
dlib/dnn/loss.h
+32
-31
No files found.
dlib/dnn/loss.h
View file @
2ed6ae1b
...
@@ -3625,25 +3625,26 @@ namespace dlib
...
@@ -3625,25 +3625,26 @@ namespace dlib
for
(
size_t
a
=
0
;
a
<
anchors
.
size
();
++
a
)
for
(
size_t
a
=
0
;
a
<
anchors
.
size
();
++
a
)
{
{
const
long
k
=
a
*
num_feats
;
for
(
long
r
=
0
;
r
<
output_tensor
.
nr
();
++
r
)
for
(
long
r
=
0
;
r
<
output_tensor
.
nr
();
++
r
)
{
{
for
(
long
c
=
0
;
c
<
output_tensor
.
nc
();
++
c
)
for
(
long
c
=
0
;
c
<
output_tensor
.
nc
();
++
c
)
{
{
const
float
obj
=
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
4
,
r
,
c
)];
const
float
obj
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
4
,
r
,
c
)];
if
(
obj
>
adjust_threshold
)
if
(
obj
>
adjust_threshold
)
{
{
const
auto
x
=
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
0
,
r
,
c
)]
;
const
auto
x
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
0
,
r
,
c
)]
*
2.0
-
0.5
;
const
auto
y
=
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
1
,
r
,
c
)]
;
const
auto
y
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
1
,
r
,
c
)]
*
2.0
-
0.5
;
const
auto
w
=
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
2
,
r
,
c
)];
const
auto
w
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
2
,
r
,
c
)];
const
auto
h
=
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
3
,
r
,
c
)];
const
auto
h
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
3
,
r
,
c
)];
yolo_rect
det
(
centered_drect
(
dpoint
((
x
+
c
)
*
stride_x
,
(
y
+
r
)
*
stride_y
),
yolo_rect
det
(
centered_drect
(
dpoint
((
x
+
c
)
*
stride_x
,
(
y
+
r
)
*
stride_y
),
w
/
(
1
-
w
)
*
anchors
[
a
].
width
,
w
/
(
1
-
w
)
*
anchors
[
a
].
width
,
h
/
(
1
-
h
)
*
anchors
[
a
].
height
));
h
/
(
1
-
h
)
*
anchors
[
a
].
height
));
for
(
long
k
=
0
;
k
<
num_classes
;
++
k
)
for
(
long
i
=
0
;
i
<
num_classes
;
++
i
)
{
{
const
float
conf
=
obj
*
out_data
[
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
5
+
k
,
r
,
c
)];
const
float
conf
=
obj
*
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
5
+
i
,
r
,
c
)];
if
(
conf
>
adjust_threshold
)
if
(
conf
>
adjust_threshold
)
det
.
labels
.
emplace_back
(
conf
,
options
.
labels
[
k
]);
det
.
labels
.
emplace_back
(
conf
,
options
.
labels
[
i
]);
}
}
if
(
!
det
.
labels
.
empty
())
if
(
!
det
.
labels
.
empty
())
{
{
...
@@ -3692,18 +3693,16 @@ namespace dlib
...
@@ -3692,18 +3693,16 @@ namespace dlib
{
{
for
(
size_t
a
=
0
;
a
<
anchors
.
size
();
++
a
)
for
(
size_t
a
=
0
;
a
<
anchors
.
size
();
++
a
)
{
{
const
auto
x_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
0
,
r
,
c
)
;
const
long
k
=
a
*
num_feats
;
const
auto
y_id
x
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
1
,
r
,
c
);
const
auto
x
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
0
,
r
,
c
)
]
*
2.0
-
0.5
;
const
auto
w_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
2
,
r
,
c
);
const
auto
y
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
1
,
r
,
c
)
]
*
2.0
-
0.5
;
const
auto
h_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
3
,
r
,
c
);
const
auto
w
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
2
,
r
,
c
)
]
;
const
auto
o_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
4
,
r
,
c
);
const
auto
h
=
out_data
[
tensor_index
(
output_tensor
,
n
,
k
+
3
,
r
,
c
)
]
;
// The prediction at r, c for anchor a
// The prediction at r, c for anchor a
const
yolo_rect
pred
(
centered_drect
(
const
yolo_rect
pred
(
centered_drect
(
dpoint
((
x
+
c
)
*
stride_x
,
(
y
+
r
)
*
stride_y
),
dpoint
((
out_data
[
x_idx
]
+
c
)
*
stride_x
,
(
out_data
[
y_idx
]
+
r
)
*
stride_y
),
w
/
(
1
-
w
)
*
anchors
[
a
].
width
,
out_data
[
w_idx
]
/
(
1
-
out_data
[
w_idx
])
*
anchors
[
a
].
width
,
h
/
(
1
-
h
)
*
anchors
[
a
].
height
));
out_data
[
h_idx
]
/
(
1
-
out_data
[
h_idx
])
*
anchors
[
a
].
height
));
// Find the best IoU for all ground truth boxes
// Find the best IoU for all ground truth boxes
double
best_iou
=
0
;
double
best_iou
=
0
;
...
@@ -3715,6 +3714,7 @@ namespace dlib
...
@@ -3715,6 +3714,7 @@ namespace dlib
}
}
// Incur loss for the boxes that are below a certain IoU threshold with any truth box
// Incur loss for the boxes that are below a certain IoU threshold with any truth box
const
auto
o_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
4
,
r
,
c
);
if
(
best_iou
<
options
.
iou_ignore_threshold
)
if
(
best_iou
<
options
.
iou_ignore_threshold
)
g
[
o_idx
]
=
options
.
lambda_obj
*
out_data
[
o_idx
];
g
[
o_idx
]
=
options
.
lambda_obj
*
out_data
[
o_idx
];
}
}
...
@@ -3764,14 +3764,7 @@ namespace dlib
...
@@ -3764,14 +3764,7 @@ namespace dlib
const
long
c
=
t_center
.
x
()
/
stride_x
;
const
long
c
=
t_center
.
x
()
/
stride_x
;
const
long
r
=
t_center
.
y
()
/
stride_y
;
const
long
r
=
t_center
.
y
()
/
stride_y
;
const
auto
x_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
0
,
r
,
c
);
const
long
k
=
a
*
num_feats
;
const
auto
y_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
1
,
r
,
c
);
const
auto
w_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
2
,
r
,
c
);
const
auto
h_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
3
,
r
,
c
);
const
auto
o_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
4
,
r
,
c
);
// This grid cell should detect an object
g
[
o_idx
]
=
options
.
lambda_obj
*
(
out_data
[
o_idx
]
-
1
);
// Get the truth box target values
// Get the truth box target values
const
double
tx
=
t_center
.
x
()
/
stride_x
-
c
;
const
double
tx
=
t_center
.
x
()
/
stride_x
-
c
;
...
@@ -3783,16 +3776,24 @@ namespace dlib
...
@@ -3783,16 +3776,24 @@ namespace dlib
const
double
scale_box
=
options
.
lambda_box
*
(
2
-
truth_box
.
rect
.
area
()
/
input_rect
.
area
());
const
double
scale_box
=
options
.
lambda_box
*
(
2
-
truth_box
.
rect
.
area
()
/
input_rect
.
area
());
// Compute the gradient for the box coordinates
// Compute the gradient for the box coordinates
g
[
x_idx
]
=
scale_box
*
(
out_data
[
x_idx
]
-
tx
);
const
auto
x_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
0
,
r
,
c
);
g
[
y_idx
]
=
scale_box
*
(
out_data
[
y_idx
]
-
ty
);
const
auto
y_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
1
,
r
,
c
);
const
auto
w_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
2
,
r
,
c
);
const
auto
h_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
3
,
r
,
c
);
g
[
x_idx
]
=
scale_box
*
(
out_data
[
x_idx
]
*
2.0
-
0.5
-
tx
);
g
[
y_idx
]
=
scale_box
*
(
out_data
[
y_idx
]
*
2.0
-
0.5
-
ty
);
g
[
w_idx
]
=
scale_box
*
(
out_data
[
w_idx
]
-
tw
);
g
[
w_idx
]
=
scale_box
*
(
out_data
[
w_idx
]
-
tw
);
g
[
h_idx
]
=
scale_box
*
(
out_data
[
h_idx
]
-
th
);
g
[
h_idx
]
=
scale_box
*
(
out_data
[
h_idx
]
-
th
);
// This grid cell should detect an object
const
auto
o_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
4
,
r
,
c
);
g
[
o_idx
]
=
options
.
lambda_obj
*
(
out_data
[
o_idx
]
-
1
);
// Compute the classification error
// Compute the classification error
for
(
long
k
=
0
;
k
<
num_classes
;
++
k
)
for
(
long
i
=
0
;
i
<
num_classes
;
++
i
)
{
{
const
auto
c_idx
=
tensor_index
(
output_tensor
,
n
,
a
*
num_feats
+
5
+
k
,
r
,
c
);
const
auto
c_idx
=
tensor_index
(
output_tensor
,
n
,
k
+
5
+
i
,
r
,
c
);
if
(
truth_box
.
label
==
options
.
labels
[
k
])
if
(
truth_box
.
label
==
options
.
labels
[
i
])
g
[
c_idx
]
=
options
.
lambda_cls
*
(
out_data
[
c_idx
]
-
1
);
g
[
c_idx
]
=
options
.
lambda_cls
*
(
out_data
[
c_idx
]
-
1
);
else
else
g
[
c_idx
]
=
options
.
lambda_cls
*
out_data
[
c_idx
];
g
[
c_idx
]
=
options
.
lambda_cls
*
out_data
[
c_idx
];
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment