Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
2e7e20f2
Commit
2e7e20f2
authored
May 05, 2012
by
Davis King
Browse files
- Added make_sparse_vector()
- Refined the sparse_to_dense() routines a little.
parent
ad3ede2d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
90 additions
and
18 deletions
+90
-18
dlib/svm/sparse_vector.h
dlib/svm/sparse_vector.h
+45
-14
dlib/svm/sparse_vector_abstract.h
dlib/svm/sparse_vector_abstract.h
+45
-4
No files found.
dlib/svm/sparse_vector.h
View file @
2e7e20f2
...
...
@@ -641,7 +641,7 @@ namespace dlib
template
<
typename
sparse_vector_type
>
inline
matrix
<
typename
sparse_vector_type
::
value_type
::
second_type
,
0
,
1
>
sparse_to_dense
(
const
sparse_vector_type
&
vect
,
long
num_dimensions
unsigned
long
num_dimensions
)
{
// You must use unsigned integral key types in your sparse vectors
...
...
@@ -674,7 +674,7 @@ namespace dlib
template
<
typename
idx_type
,
typename
value_type
,
typename
alloc
>
matrix
<
value_type
,
0
,
1
>
sparse_to_dense
(
const
std
::
vector
<
std
::
pair
<
idx_type
,
value_type
>
,
alloc
>&
vect
,
long
num_dimensions
unsigned
long
num_dimensions
)
{
return
impl
::
sparse_to_dense
(
vect
,
num_dimensions
);
...
...
@@ -695,7 +695,7 @@ namespace dlib
template
<
typename
T1
,
typename
T2
,
typename
T3
,
typename
T4
>
matrix
<
T2
,
0
,
1
>
sparse_to_dense
(
const
std
::
map
<
T1
,
T2
,
T3
,
T4
>&
vect
,
long
num_dimensions
unsigned
long
num_dimensions
)
{
return
impl
::
sparse_to_dense
(
vect
,
num_dimensions
);
...
...
@@ -720,23 +720,25 @@ namespace dlib
template
<
typename
EXP
>
matrix
<
typename
EXP
::
type
,
0
,
1
>
sparse_to_dense
(
const
matrix
<
EXP
>&
item
,
long
num
const
matrix
_exp
<
EXP
>&
item
,
unsigned
long
num
)
{
if
(
item
.
size
()
==
num
)
typedef
typename
EXP
::
type
type
;
if
(
item
.
size
()
==
(
long
)
num
)
return
item
;
else
if
(
item
.
size
()
<
num
)
return
join_cols
(
item
,
zeros_matrix
(
num
-
item
.
size
(),
1
));
else
if
(
item
.
size
()
<
(
long
)
num
)
return
join_cols
(
item
,
zeros_matrix
<
type
>
((
long
)
num
-
item
.
size
(),
1
));
else
return
row
m
(
item
,
0
,
num
);
return
col
m
(
item
,
0
,
(
long
)
num
);
}
// ----------------------------------------------------------------------------------------
template
<
typename
sample_type
,
typename
alloc
>
std
::
vector
<
matrix
<
typename
sample_type
::
value_type
::
second_type
,
0
,
1
>
>
sparse_to_dense
(
const
std
::
vector
<
sample_type
,
alloc
>&
samples
const
std
::
vector
<
sample_type
,
alloc
>&
samples
,
unsigned
long
num_dimensions
)
{
typedef
typename
sample_type
::
value_type
pair_type
;
...
...
@@ -744,20 +746,49 @@ namespace dlib
std
::
vector
<
matrix
<
value_type
,
0
,
1
>
>
result
;
// figure out how many elements we need in our dense vectors.
const
unsigned
long
max_dim
=
max_index_plus_one
(
samples
);
// now turn all the samples into dense samples
result
.
resize
(
samples
.
size
());
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
result
[
i
]
=
sparse_to_dense
(
samples
[
i
],
max
_dim
);
result
[
i
]
=
sparse_to_dense
(
samples
[
i
],
num
_dim
ensions
);
}
return
result
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
sample_type
,
typename
alloc
>
std
::
vector
<
matrix
<
typename
sample_type
::
value_type
::
second_type
,
0
,
1
>
>
sparse_to_dense
(
const
std
::
vector
<
sample_type
,
alloc
>&
samples
)
{
return
sparse_to_dense
(
samples
,
max_index_plus_one
(
samples
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
T
make_sparse_vector
(
const
T
&
v
)
{
// You must use unsigned integral key types in your sparse vectors
typedef
typename
T
::
value_type
::
first_type
idx_type
;
typedef
typename
T
::
value_type
::
second_type
value_type
;
COMPILE_TIME_ASSERT
(
is_unsigned_type
<
idx_type
>::
value
);
std
::
map
<
idx_type
,
value_type
>
temp
;
for
(
typename
T
::
const_iterator
i
=
v
.
begin
();
i
!=
v
.
end
();
++
i
)
{
temp
[
i
->
first
]
+=
i
->
second
;
}
return
T
(
temp
.
begin
(),
temp
.
end
());
}
// ----------------------------------------------------------------------------------------
}
...
...
dlib/svm/sparse_vector_abstract.h
View file @
2e7e20f2
...
...
@@ -371,7 +371,7 @@ namespace dlib
);
/*!
requires
- vect must be a
n unsorted
sparse vector or a dense column vector.
- vect must be a sparse vector or a dense column vector.
ensures
- converts the single sparse or dense vector vect to a dense (column matrix form)
representation. That is, this function returns a vector V such that:
...
...
@@ -389,11 +389,11 @@ namespace dlib
>
matrix
<
typename
sample_type
::
value_type
::
second_type
,
0
,
1
>
sparse_to_dense
(
const
sample_type
&
vect
,
long
num_dimensions
unsigned
long
num_dimensions
);
/*!
requires
- vect must be a
n unsorted
sparse vector or a dense column vector.
- vect must be a sparse vector or a dense column vector.
ensures
- converts the single sparse or dense vector vect to a dense (column matrix form)
representation. That is, this function returns a vector V such that:
...
...
@@ -415,7 +415,7 @@ namespace dlib
);
/*!
requires
- all elements of samples must be
unsorted
sparse vectors or dense column vectors.
- all elements of samples must be sparse vectors or dense column vectors.
ensures
- converts from sparse sample vectors to dense (column matrix form)
- That is, this function returns a std::vector R such that:
...
...
@@ -427,6 +427,47 @@ namespace dlib
given by samples[i].)
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
sample_type
,
typename
alloc
>
std
::
vector
<
matrix
<
typename
sample_type
::
value_type
::
second_type
,
0
,
1
>
>
sparse_to_dense
(
const
std
::
vector
<
sample_type
,
alloc
>&
samples
,
unsigned
long
num_dimensions
);
/*!
requires
- all elements of samples must be sparse vectors or dense column vectors.
ensures
- converts from sparse sample vectors to dense (column matrix form)
- That is, this function returns a std::vector R such that:
- R contains column matrices
- R.size() == samples.size()
- for all valid i:
- R[i] == sparse_to_dense(samples[i], num_dimensions)
(i.e. the dense (i.e. dlib::matrix) version of the sparse sample
given by samples[i].)
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
T
make_sparse_vector
(
const
T
&
v
);
/*!
requires
- v is an unsorted sparse vector
ensures
- returns a copy of v which is a sparse vector.
(i.e. it will be properly sorted and not have any duplicate
key values).
!*/
// ----------------------------------------------------------------------------------------
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment