Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
1c269270
Commit
1c269270
authored
May 26, 2013
by
Davis King
Browse files
Added testing and cross validation routines for the python sequence segmenter interface.
parent
a4590776
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
263 additions
and
1 deletion
+263
-1
tools/python/src/sequence_segmenter.cpp
tools/python/src/sequence_segmenter.cpp
+263
-1
No files found.
tools/python/src/sequence_segmenter.cpp
View file @
1c269270
...
...
@@ -355,6 +355,9 @@ void configure_trainer (
{
pyassert
(
samples
.
size
()
!=
0
,
"Invalid arguments. You must give some training sequences."
);
pyassert
(
samples
[
0
].
size
()
!=
0
,
"Invalid arguments. You can't have zero length training sequences."
);
pyassert
(
params
.
window_size
!=
0
,
"Invalid window_size parameter, it must be > 0."
);
pyassert
(
params
.
epsilon
>
0
,
"Invalid epsilon parameter, it must be > 0."
);
pyassert
(
params
.
C
>
0
,
"Invalid C parameter, it must be > 0."
);
const
long
dims
=
samples
[
0
][
0
].
size
();
trainer
=
structural_sequence_segmentation_trainer
<
T
>
(
T
(
dims
,
params
.
window_size
));
...
...
@@ -532,11 +535,252 @@ segmenter_type train_sparse (
// ----------------------------------------------------------------------------------------
struct
segmenter_test
{
double
precision
;
double
recall
;
double
f1
;
};
void
serialize
(
const
segmenter_test
&
item
,
std
::
ostream
&
out
)
{
serialize
(
item
.
precision
,
out
);
serialize
(
item
.
recall
,
out
);
serialize
(
item
.
f1
,
out
);
}
void
deserialize
(
segmenter_test
&
item
,
std
::
istream
&
in
)
{
deserialize
(
item
.
precision
,
in
);
deserialize
(
item
.
recall
,
in
);
deserialize
(
item
.
f1
,
in
);
}
std
::
string
segmenter_test__str__
(
const
segmenter_test
&
item
)
{
std
::
ostringstream
sout
;
sout
<<
"precision: "
<<
item
.
precision
<<
" recall: "
<<
item
.
recall
<<
" f1-score: "
<<
item
.
f1
;
return
sout
.
str
();
}
std
::
string
segmenter_test__repr__
(
const
segmenter_test
&
item
)
{
return
"< "
+
segmenter_test__str__
(
item
)
+
" >"
;}
// ----------------------------------------------------------------------------------------
const
segmenter_test
test_sequence_segmenter1
(
const
segmenter_type
&
segmenter
,
const
std
::
vector
<
std
::
vector
<
dense_vect
>
>&
samples
,
const
std
::
vector
<
ranges
>&
segments
)
{
pyassert
(
is_sequence_segmentation_problem
(
samples
,
segments
),
"Invalid inputs"
);
matrix
<
double
,
1
,
3
>
res
;
switch
(
segmenter
.
mode
)
{
case
0
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter0
,
samples
,
segments
);
break
;
case
1
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter1
,
samples
,
segments
);
break
;
case
2
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter2
,
samples
,
segments
);
break
;
case
3
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter3
,
samples
,
segments
);
break
;
case
4
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter4
,
samples
,
segments
);
break
;
case
5
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter5
,
samples
,
segments
);
break
;
case
6
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter6
,
samples
,
segments
);
break
;
case
7
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter7
,
samples
,
segments
);
break
;
default:
throw
dlib
::
error
(
"Invalid mode"
);
}
segmenter_test
temp
;
temp
.
precision
=
res
(
0
);
temp
.
recall
=
res
(
1
);
temp
.
f1
=
res
(
2
);
return
temp
;
}
const
segmenter_test
test_sequence_segmenter2
(
const
segmenter_type
&
segmenter
,
const
std
::
vector
<
std
::
vector
<
sparse_vect
>
>&
samples
,
const
std
::
vector
<
ranges
>&
segments
)
{
pyassert
(
is_sequence_segmentation_problem
(
samples
,
segments
),
"Invalid inputs"
);
matrix
<
double
,
1
,
3
>
res
;
switch
(
segmenter
.
mode
)
{
case
8
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter8
,
samples
,
segments
);
break
;
case
9
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter9
,
samples
,
segments
);
break
;
case
10
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter10
,
samples
,
segments
);
break
;
case
11
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter11
,
samples
,
segments
);
break
;
case
12
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter12
,
samples
,
segments
);
break
;
case
13
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter13
,
samples
,
segments
);
break
;
case
14
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter14
,
samples
,
segments
);
break
;
case
15
:
res
=
test_sequence_segmenter
(
segmenter
.
segmenter15
,
samples
,
segments
);
break
;
default:
throw
dlib
::
error
(
"Invalid mode"
);
}
segmenter_test
temp
;
temp
.
precision
=
res
(
0
);
temp
.
recall
=
res
(
1
);
temp
.
f1
=
res
(
2
);
return
temp
;
}
// ----------------------------------------------------------------------------------------
const
segmenter_test
cross_validate_sequence_segmenter1
(
const
std
::
vector
<
std
::
vector
<
dense_vect
>
>&
samples
,
const
std
::
vector
<
ranges
>&
segments
,
long
folds
,
segmenter_params
params
)
{
pyassert
(
is_sequence_segmentation_problem
(
samples
,
segments
),
"Invalid inputs"
);
pyassert
(
1
<
folds
&&
folds
<=
static_cast
<
long
>
(
samples
.
size
()),
"folds argument is outside the valid range."
);
matrix
<
double
,
1
,
3
>
res
;
int
mode
=
0
;
if
(
params
.
use_BIO_model
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
if
(
params
.
use_high_order_features
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
if
(
params
.
allow_negative_weights
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
switch
(
mode
)
{
case
0
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe0
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
1
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe1
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
2
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe2
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
3
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe3
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
4
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe4
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
5
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe5
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
6
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe6
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
7
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe7
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
default:
throw
dlib
::
error
(
"Invalid mode"
);
}
segmenter_test
temp
;
temp
.
precision
=
res
(
0
);
temp
.
recall
=
res
(
1
);
temp
.
f1
=
res
(
2
);
return
temp
;
}
const
segmenter_test
cross_validate_sequence_segmenter2
(
const
std
::
vector
<
std
::
vector
<
sparse_vect
>
>&
samples
,
const
std
::
vector
<
ranges
>&
segments
,
long
folds
,
segmenter_params
params
)
{
pyassert
(
is_sequence_segmentation_problem
(
samples
,
segments
),
"Invalid inputs"
);
pyassert
(
1
<
folds
&&
folds
<=
static_cast
<
long
>
(
samples
.
size
()),
"folds argument is outside the valid range."
);
matrix
<
double
,
1
,
3
>
res
;
int
mode
=
0
;
if
(
params
.
use_BIO_model
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
if
(
params
.
use_high_order_features
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
if
(
params
.
allow_negative_weights
)
mode
=
mode
*
2
+
1
;
else
mode
=
mode
*
2
;
mode
+=
8
;
switch
(
mode
)
{
case
8
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe8
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
9
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe9
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
10
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe10
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
11
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe11
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
12
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe12
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
13
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe13
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
14
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe14
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
case
15
:
{
structural_sequence_segmentation_trainer
<
segmenter_type
::
fe15
>
trainer
;
configure_trainer
(
samples
,
trainer
,
params
);
res
=
cross_validate_sequence_segmenter
(
trainer
,
samples
,
segments
,
folds
);
}
break
;
default:
throw
dlib
::
error
(
"Invalid mode"
);
}
segmenter_test
temp
;
temp
.
precision
=
res
(
0
);
temp
.
recall
=
res
(
1
);
temp
.
f1
=
res
(
2
);
return
temp
;
}
// ----------------------------------------------------------------------------------------
void
bind_sequence_segmenter
()
{
class_
<
segmenter_params
>
(
"segmenter_params"
,
"This class is used to define all the optional parameters to the
\n
\
train_sequence_segmenter() routine. "
)
train_sequence_segmenter()
and cross_validate_sequence_segmenter()
routine
s
. "
)
.
def_readwrite
(
"use_BIO_model"
,
&
segmenter_params
::
use_BIO_model
)
.
def_readwrite
(
"use_high_order_features"
,
&
segmenter_params
::
use_high_order_features
)
.
def_readwrite
(
"allow_negative_weights"
,
&
segmenter_params
::
allow_negative_weights
)
...
...
@@ -545,6 +789,7 @@ train_sequence_segmenter() routine. ")
.
def_readwrite
(
"epsilon"
,
&
segmenter_params
::
epsilon
)
.
def_readwrite
(
"max_cache_size"
,
&
segmenter_params
::
max_cache_size
)
.
def_readwrite
(
"C"
,
&
segmenter_params
::
C
,
"SVM C parameter"
)
.
def_readwrite
(
"be_verbose"
,
&
segmenter_params
::
be_verbose
)
.
def
(
"__repr__"
,
&
segmenter_params__repr__
)
.
def
(
"__str__"
,
&
segmenter_params__str__
)
.
def_pickle
(
serialize_pickle
<
segmenter_params
>
());
...
...
@@ -555,9 +800,26 @@ train_sequence_segmenter() routine. ")
.
def_readonly
(
"weights"
,
&
segmenter_type
::
get_weights
)
.
def_pickle
(
serialize_pickle
<
segmenter_type
>
());
class_
<
segmenter_test
>
(
"segmenter_test"
)
.
def_readwrite
(
"precision"
,
&
segmenter_test
::
precision
)
.
def_readwrite
(
"recall"
,
&
segmenter_test
::
recall
)
.
def_readwrite
(
"f1"
,
&
segmenter_test
::
f1
)
.
def
(
"__repr__"
,
&
segmenter_test__repr__
)
.
def
(
"__str__"
,
&
segmenter_test__str__
)
.
def_pickle
(
serialize_pickle
<
segmenter_test
>
());
using
boost
::
python
::
arg
;
def
(
"train_sequence_segmenter"
,
train_dense
,
(
arg
(
"samples"
),
arg
(
"segments"
),
arg
(
"params"
)
=
segmenter_params
()));
def
(
"train_sequence_segmenter"
,
train_sparse
,
(
arg
(
"samples"
),
arg
(
"segments"
),
arg
(
"params"
)
=
segmenter_params
()));
def
(
"test_sequence_segmenter"
,
test_sequence_segmenter1
);
def
(
"test_sequence_segmenter"
,
test_sequence_segmenter2
);
def
(
"cross_validate_sequence_segmenter"
,
cross_validate_sequence_segmenter1
,
(
arg
(
"samples"
),
arg
(
"segments"
),
arg
(
"folds"
),
arg
(
"params"
)
=
segmenter_params
()));
def
(
"cross_validate_sequence_segmenter"
,
cross_validate_sequence_segmenter2
,
(
arg
(
"samples"
),
arg
(
"segments"
),
arg
(
"folds"
),
arg
(
"params"
)
=
segmenter_params
()));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment