ml.xml 87.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Machine Learning</title>

   <!-- ************************************************************************* -->

   <body>
      <br/><br/>

         <p>
            This page documents all the machine learning algorithms present in
            the library.  In particular, there are algorithms for performing 
Davis King's avatar
Davis King committed
15
            classification, regression, clustering, anomaly detection, 
16
17
18
19
20
21
22
            and feature ranking, as well as algorithms for doing more 
            specialized computations.
         </p>

         <p> 
            A good tutorial and introduction to the general concepts used by most of the
            objects in this part of the library can be found in the <a href="svm_ex.cpp.html">svm example</a> program.
Davis King's avatar
Davis King committed
23
            After reading this example another good one to consult would be the <a href="model_selection_ex.cpp.html">model selection</a>
24
25
            example program.  Finally, if you came here looking for a binary classification or regression tool then I would
            try the <a href="#krr_trainer">krr_trainer</a> first as it is generally the easiest method to use.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
         </p>

         <p>   
            The major design goal of this portion of the library is to provide a highly modular and
            simple architecture for dealing with kernel algorithms. Towards this end, dlib takes a generic
            programming approach using C++ templates. In particular, each algorithm is parameterized
            to allow a user to supply either one of the predefined dlib kernels (e.g. <a 
            href="#radial_basis_kernel">RBF</a> operating
            on <a href="containers.html#matrix">column vectors</a>), or a new user defined kernel. 
            Moreover, the implementations of the algorithms are totally separated from the data on 
            which they operate. This makes the dlib implementation generic enough to operate on 
            any kind of data, be it column vectors, images, or some other form of structured data. 
            All that is necessary is an appropriate kernel.
         </p>

Davis King's avatar
Davis King committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

         <br/> 
         <h3>Paper Describing dlib Machine Learning</h3>
         <pre>
Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf">Dlib-ml: A Machine Learning Toolkit</a>. 
   <i>Journal of Machine Learning Research</i> 10, pp. 1755-1758, 2009

@Article{dlib09,
  author = {Davis E. King},
  title = {Dlib-ml: A Machine Learning Toolkit},
  journal = {Journal of Machine Learning Research},
  year = {2009},
  volume = {10},
  pages = {1755-1758},
}
         </pre>

58
59
60
61
62
63
64
   </body>

   <!-- ************************************************************************* -->

   <menu width="150">
    <top>

65
      <center><h2><u>Primary Algorithms</u></h2></center>
66
      <section>
67
         <name>Binary Classification</name>
68
         <item>svm_nu_trainer</item> 
Davis King's avatar
Davis King committed
69
         <item>svm_c_trainer</item> 
Davis King's avatar
Davis King committed
70
         <item>svm_c_linear_trainer</item> 
Davis King's avatar
Davis King committed
71
         <item>svm_c_ekm_trainer</item> 
72
         <item>rvm_trainer</item> 
73
74
75
76
77
78
79
         <item>svm_pegasos</item> 
         <item>train_probabilistic_decision_function</item> 
      </section>
      <section>
         <name>Multiclass Classification</name>
         <item>one_vs_one_trainer</item> 
         <item>one_vs_all_trainer</item> 
Davis King's avatar
Davis King committed
80
         <item>svm_multiclass_linear_trainer</item> 
81
82
83
84
85
      </section>
      <section>
         <name>Regression</name>
         <item>mlp</item> 
         <item>krls</item>
Davis King's avatar
Davis King committed
86
         <item>krr_trainer</item> 
Davis King's avatar
Davis King committed
87
         <item>rr_trainer</item> 
Davis King's avatar
Davis King committed
88
         <item>svr_trainer</item> 
89
90
         <item>rvm_regression_trainer</item> 
         <item>rbf_network_trainer</item> 
91
92
93
94
95
96
97
98
99
100
101
102
103
      </section>
      <section>
         <name>Unsupervised</name>
         <item>kcentroid</item>
         <item>linearly_independent_subset_finder</item>
         <item>empirical_kernel_map</item>
         <item>kkmeans</item>
         <item>svm_one_class_trainer</item> 
         <item>find_clusters_using_kmeans</item> 
         <item>vector_normalizer</item> 
         <item>vector_normalizer_pca</item> 
      </section>
      <section>
Davis King's avatar
Davis King committed
104
         <name>Semi-Supervised</name>
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
         <item>linear_manifold_regularizer</item>
         <item>discriminant_pca</item> 
         <item nolink="true">
            <name>manifold_regularization_tools</name>
            <sub>
               <item>sample_pair</item>
               <item>find_percent_shortest_edges_randomly</item>
               <item>find_k_nearest_neighbors</item>
               <item>find_approximate_k_nearest_neighbors</item>
               <item>remove_short_edges</item>
               <item>remove_long_edges</item>
               <item>remove_percent_longest_edges</item>
               <item>remove_percent_shortest_edges</item>
               <item>squared_euclidean_distance</item>
               <item>use_weights_of_one</item>
               <item>use_gaussian_weights</item>
            </sub>
         </item>
      </section>
      <section>
         <name>Feature Selection</name>
126
         <item>rank_features</item> 
127
128
129
130
131
132
133
134
135
136
137
138
139
         <item>sort_basis_vectors</item> 
      </section>

      <center><h2><u>Other Tools</u></h2></center>
      <section>
         <name>Validation</name>
         <item>cross_validate_trainer</item> 
         <item>cross_validate_trainer_threaded</item> 
         <item>cross_validate_multiclass_trainer</item> 
         <item>cross_validate_regression_trainer</item> 
         <item>test_binary_decision_function</item> 
         <item>test_multiclass_decision_function</item> 
         <item>test_regression_function</item> 
140
141
142
143
144
145
146
      </section>

      <section>
         <name>Trainer Adapters</name>
         <item>reduced</item> 
         <item>reduced2</item> 
         <item>batch</item> 
Davis King's avatar
Davis King committed
147
         <item>probabilistic</item> 
148
         <item>verbose_batch</item> 
Davis King's avatar
Davis King committed
149
150
         <item>batch_cached</item> 
         <item>verbose_batch_cached</item> 
Davis King's avatar
Davis King committed
151
         <item>null_trainer</item> 
Davis King's avatar
Davis King committed
152
153
         <item>roc_c1_trainer</item> 
         <item>roc_c2_trainer</item> 
154
155
156
157
158
159
160
161
162
      </section>

      <section>
         <name>Kernels</name>
         <item>radial_basis_kernel</item>
         <item>polynomial_kernel</item>
         <item>sigmoid_kernel</item>
         <item>linear_kernel</item>
         <item>offset_kernel</item>
Davis King's avatar
Davis King committed
163
164
165
166
167
168

         <item>sparse_radial_basis_kernel</item>
         <item>sparse_polynomial_kernel</item>
         <item>sparse_sigmoid_kernel</item>
         <item>sparse_linear_kernel</item>

169
170
171
172
173
      </section>

      <section>
         <name>Function Objects</name>
         <item>decision_function</item>
Davis King's avatar
Davis King committed
174
         <item>projection_function</item>
175
176
         <item>distance_function</item>
         <item>probabilistic_decision_function</item>
Davis King's avatar
Davis King committed
177
         <item>probabilistic_function</item>
178
         <item>normalized_function</item>
Davis King's avatar
Davis King committed
179
         <item>one_vs_one_decision_function</item>
Davis King's avatar
Davis King committed
180
         <item>multiclass_linear_decision_function</item>
Davis King's avatar
Davis King committed
181
         <item>one_vs_all_decision_function</item>
182
183
      </section>

Davis King's avatar
Davis King committed
184
185
186
187
188
      <section>
         <name>Data IO</name>
         <item>load_libsvm_formatted_data</item> 
         <item>save_libsvm_formatted_data</item> 
         <item>sparse_to_dense</item>
Davis King's avatar
Davis King committed
189
         <item>fix_nonzero_indexing</item>
Davis King's avatar
Davis King committed
190
191
      </section>

192
193
      <section>
         <name>Miscellaneous</name>
Davis King's avatar
Davis King committed
194
         <item>simplify_linear_decision_function</item> 
Davis King's avatar
Davis King committed
195
         <item>fill_lisf</item> 
196
197
         <item>randomize_samples</item> 
         <item>is_binary_classification_problem</item> 
Davis King's avatar
Davis King committed
198
         <item>approximate_distance_function</item> 
Davis King's avatar
Davis King committed
199
         <item>is_learning_problem</item> 
Davis King's avatar
Davis King committed
200
         <item>select_all_distinct_labels</item> 
201
         <item>pick_initial_centers</item> 
Davis King's avatar
Davis King committed
202
         <item>find_gamma_with_big_centroid_gap</item> 
Davis King's avatar
Davis King committed
203
         <item>compute_mean_squared_distance</item> 
Davis King's avatar
Davis King committed
204
         <item>kernel_matrix</item> 
205
206
207
208
209
         <item>
               <name>sparse vectors</name>
               <link>dlib/svm/sparse_vector_abstract.h.html#sparse_vectors</link>
         </item>

Davis King's avatar
Davis King committed
210
211
         

212
213
214
215
216
217
218
219
220
221
222
      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   
Davis King's avatar
Davis King committed
223
224
   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
      <component>
         <name>use_gaussian_weights</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/function_objects_abstract.h</spec_file>
         <description>
                This is a simple function object that takes a single argument
                which should be an object similar to <a href="#sample_pair">sample_pair</a>.  
         </description>
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>

      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>use_weights_of_one</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/function_objects_abstract.h</spec_file>
         <description>
                This is a simple function object that takes a single argument
                and always returns 1 
         </description>

      </component>

   <!-- ************************************************************************* -->
      
      
      <component>
         <name>squared_euclidean_distance</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/function_objects_abstract.h</spec_file>
         <description>
                This is a simple function object that computes squared euclidean distance
                between two <a href="containers.html#matrix">matrix</a> objects.
         </description>
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>

      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_k_nearest_neighbors</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This is a function which finds all the k nearest neighbors of a set of points and outputs
            the result as a vector of <a href="#sample_pair">sample_pair</a> objects.  It takes O(n^2) where
            n is the number of data samples.  A faster approximate version is provided by 
Davis King's avatar
Davis King committed
279
            <a href="#find_approximate_k_nearest_neighbors">find_approximate_k_nearest_neighbors</a>.
Davis King's avatar
Davis King committed
280
281
282
283
         </description>

      </component>

Davis King's avatar
Davis King committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
   <!-- ************************************************************************* -->

      <component>
         <name>remove_short_edges</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This is a simple function for removing edges with a small distance value from
            a vector of <a href="#sample_pair">sample_pairs</a>.
         </description>

      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>remove_percent_shortest_edges</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This is a simple function for removing edges with a small distance value from
            a vector of <a href="#sample_pair">sample_pairs</a>.
         </description>

      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>remove_long_edges</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This is a simple function for removing edges with a large distance value from
            a vector of <a href="#sample_pair">sample_pairs</a>.
         </description>

      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>remove_percent_longest_edges</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This is a simple function for removing edges with a large distance value from
            a vector of <a href="#sample_pair">sample_pairs</a>.
         </description>

      </component>

Davis King's avatar
Davis King committed
336
337
338
339
340
341
342
343
344
345
346
347
348
   <!-- ************************************************************************* -->

      <component>
         <name>find_approximate_k_nearest_neighbors</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
            This function is a simple approximate form of <a href="#find_k_nearest_neighbors">find_k_nearest_neighbors</a>.
            Instead of checking all possible edges it randomly samples a large number of them and then performs 
            exact k-nearest-neighbors on that randomly selected subset.
         </description>
      </component>

Davis King's avatar
Davis King committed
349
350
351
352
353
354
355
   <!-- ************************************************************************* -->

      <component>
         <name>find_percent_shortest_edges_randomly</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/graph_creation_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
356
            This function is a simple approximate form of <a href="#find_k_nearest_neighbors">find_k_nearest_neighbors</a>.
Davis King's avatar
Davis King committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            Instead of checking all possible edges it randomly samples a large number of them and
            then returns the best ones.  
         </description>

         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      
      <component>
         <name>sample_pair</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/sample_pair_abstract.h</spec_file>
         <description>
            This object is intended to represent an edge in an undirected graph 
Davis King's avatar
Davis King committed
376
                which has data samples at its vertices.  
Davis King's avatar
Davis King committed
377
378
379
380
381
382
383
384
385
386
387
         </description>

         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      
Davis King's avatar
Davis King committed
388
389
390
391
392
393
394
395
396
397
      <component>
         <name>find_clusters_using_kmeans</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This is just a simple linear kmeans clustering implementation.
         </description>
                                 
      </component>

398
   <!-- ************************************************************************* -->
Davis King's avatar
Davis King committed
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
      <component>
         <name>pick_initial_centers</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This is a function that you can use to seed data clustering algorithms
            like the <a href="#kkmeans">kkmeans</a> clustering method.  What it 
            does is pick reasonable starting points for clustering by basically
            trying to find a set of points that are all far away from each other.
         </description>
         <examples>
            <example>kkmeans_ex.cpp.html</example>
         </examples>
                                 
      </component>

Davis King's avatar
Davis King committed
416
417
418
419
420
421
422
423
424
   <!-- ************************************************************************* -->
      
      <component>
         <name>kernel_matrix</name>
         <file>dlib/svm.h</file>
         <spec_file>dlib/svm/kernel_matrix_abstract.h</spec_file>
         <description>
            This is a simple set of functions that makes it easy to turn a kernel 
            object and a set of samples into a kernel matrix.  It takes these two
Davis King's avatar
Davis King committed
425
            things and returns a <a href="dlib/matrix/matrix_exp_abstract.h.html#matrix_exp">matrix expression</a>
Davis King's avatar
Davis King committed
426
427
428
429
430
            that represents the kernel matrix.
         </description>
                                 
      </component>

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
   <!-- ************************************************************************* -->
      
      <component checked="true">
         <name>mlp</name>
         <file>dlib/mlp.h</file>
         <spec_file>dlib/mlp/mlp_kernel_abstract.h</spec_file>
         <description>
            <p>
                This object represents a multilayer layer perceptron network that is
                trained using the back propagation algorithm.  The training algorithm also
                incorporates the momentum method.  That is, each round of back propagation
                training also adds a fraction of the previous update.  This fraction
                is controlled by the momentum term set in the constructor.  
            </p>
            <p>
               It is worth noting that a MLP is, in general, very inferior to modern
               kernel algorithms such as the support vector machine.  So if you haven't
               tried any other techniques with your data you really should.  
            </p>
         </description>

         <examples>
            <example>mlp_ex.cpp.html</example>
         </examples>
         
         <implementations>
            <implementation>
               <name>mlp_kernel_1</name>
               <file>dlib/mlp/mlp_kernel_1.h</file>
               <description> 
                  This is implemented in the obvious way.
               </description> 
    
               <typedefs>
                  <typedef>
                     <name>kernel_1a</name>
                     <description>is a typedef for mlp_kernel_1</description>
                  </typedef>
               </typedefs>                
               
            </implementation> 
                     
         </implementations>
                        
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>krls</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/krls_abstract.h</spec_file>
         <description>
                This is an implementation of the kernel recursive least squares algorithm 
                described in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
            <p>
                The long and short of this algorithm is that it is an online kernel based 
                regression algorithm.  You give it samples (x,y) and it learns the function
                f(x) == y.  For a detailed description of the algorithm read the above paper.
            </p>
         </description>

         <examples>
            <example>krls_ex.cpp.html</example>
            <example>krls_filter_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_pegasos</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
                This object implements an online algorithm for training a support 
                vector machine for solving binary classification problems.  

            <p>
                The implementation of the Pegasos algorithm used by this object is based
                on the following excellent paper:
               <blockquote>
                    Pegasos: Primal estimated sub-gradient solver for SVM (2007)
Davis King's avatar
Davis King committed
515
                    by Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro 
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
                    In ICML 
               </blockquote>
            </p>
            <p>
                This SVM training algorithm has two interesting properties.  First, the 
                pegasos algorithm itself converges to the solution in an amount of time
                unrelated to the size of the training set (in addition to being quite fast
                to begin with).  This makes it an appropriate algorithm for learning from
                very large datasets.  Second, this object uses the <a href="#kcentroid">kcentroid</a> object 
                to maintain a sparse approximation of the learned decision function.  
                This means that the number of support vectors in the resulting decision 
                function is also unrelated to the size of the dataset (in normal SVM
                training algorithms, the number of support vectors grows approximately 
                linearly with the size of the training set).  
            </p>
         </description>

         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
Davis King's avatar
Davis King committed
535
            <example>svm_sparse_ex.cpp.html</example>
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
         </examples>
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>kkmeans</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
                This is an implementation of a kernelized k-means clustering algorithm.  
                It performs k-means clustering by using the <a href="#kcentroid">kcentroid</a> object.  
         </description>

         <examples>
            <example>kkmeans_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>vector_normalizer</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/statistics_abstract.h</spec_file>
         <description>
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  
         </description>

         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
576
577
578
   <!-- ************************************************************************* -->

      
Davis King's avatar
Davis King committed
579
580
581
582
583
584
585
      <component>
         <name>discriminant_pca</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/dpca_abstract.h</spec_file>
         <description>
                This object implements the Discriminant PCA technique described in the paper:
                  <blockquote>
Davis King's avatar
Davis King committed
586
                    A New Discriminant Principal Component Analysis Method with Partial Supervision (2009)
Davis King's avatar
Davis King committed
587
588
                    by Dan Sun and Daoqiang Zhang
                  </blockquote>
Davis King's avatar
Davis King committed
589
590
591
                This algorithm is basically a straightforward generalization of the classical PCA
                technique to handle partially labeled data.  It is useful if you want to learn a linear
                dimensionality reduction rule using a bunch of data that is partially labeled.  
Davis King's avatar
Davis King committed
592
593
594
595
596
597
         </description>

      </component>
      
   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
      <component>
         <name>vector_normalizer_pca</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/statistics_abstract.h</spec_file>
         <description>
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  

                This object also uses principal component analysis for the purposes 
                of reducing the number of elements in a vector.  
         </description>

      </component>
      
613
614
615
616
617
618
619
620
621
   <!-- ************************************************************************* -->

      <component>
         <name>linearly_independent_subset_finder</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/linearly_independent_subset_finder_abstract.h</spec_file>
         <description>
            <p>
                This is an implementation of an online algorithm for recursively finding a
Davis King's avatar
Davis King committed
622
623
624
                set (aka dictionary) of linearly independent vectors in a kernel induced 
                feature space.  To use it you decide how large you would like the dictionary 
                to be and then you feed it sample points.  
625
626
            </p>
            <p>
Davis King's avatar
Davis King committed
627
628
629
630
                The implementation uses the Approximately Linearly Dependent metric described 
                in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel to 
                decide which points are more linearly independent than others.  The metric is 
                simply the squared distance between a test point and the subspace spanned by 
Davis King's avatar
Davis King committed
631
                the set of dictionary vectors.
632
633
            </p>
            <p>
Davis King's avatar
Davis King committed
634
                Each time you present this object with a new sample point  
Davis King's avatar
Davis King committed
635
                it calculates the projection distance and if it is sufficiently large then this 
Davis King's avatar
Davis King committed
636
637
638
639
640
                new point is included into the dictionary.  Note that this object can be configured 
                to have a maximum size.  Once the max dictionary size is reached each new point 
                kicks out a previous point.  This is done by removing the dictionary vector that 
                has the smallest projection distance onto the others.  That is, the "least linearly 
                independent" vector is removed to make room for the new one.
641
642
            </p>
         </description>
Davis King's avatar
Davis King committed
643
644
645
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
         </examples>
646
647
648
649

      </component>
      
      
Davis King's avatar
Davis King committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
   <!-- ************************************************************************* -->
      
      <component>
         <name>fill_lisf</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/linearly_independent_subset_finder_abstract.h</spec_file>
         <description>
               This is a simple function for filling a 
               <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a>
               with data points by using random sampling.   
         </description>
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
         </examples>

      </component>
      
      
Davis King's avatar
Davis King committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
   <!-- ************************************************************************* -->
      
      <component>
         <name>sort_basis_vectors</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sort_basis_vectors_abstract.h</spec_file>
         <description>
              A kernel based learning method ultimately needs to select a set of basis functions
              represented by a particular choice of kernel and a set of basis vectors.  
              sort_basis_vectors() is a function which attempts to perform supervised
              basis set selection.  In particular, you give it a candidate set of basis
              vectors and it sorts them according to how useful they are for solving
              a particular decision problem.
         </description>
      </component>
      
      
Davis King's avatar
Davis King committed
685
686
687
688
689
690
691
692
   <!-- ************************************************************************* -->
      
      <component>
         <name>linear_manifold_regularizer</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/linear_manifold_regularizer_abstract.h</spec_file>
         <description>
            <p>
Davis King's avatar
Davis King committed
693
694
                Many learning algorithms attempt to minimize a function that, at a high 
                level, looks like this:   
Davis King's avatar
Davis King committed
695
<pre>
Davis King's avatar
Davis King committed
696
   f(w) == complexity + training_set_error
Davis King's avatar
Davis King committed
697
698
699
700
701
702
703
704
705
706
</pre>
            </p>

               <p>
                The idea is to find the set of parameters, w, that gives low error on 
                your training data but also is not "complex" according to some particular
                measure of complexity.  This strategy of penalizing complexity is 
                usually called regularization.
               </p>

Davis King's avatar
Davis King committed
707
708
709
710
                <p>
                In the above setting, all the training data consists of labeled samples.  
                However, it would be nice to be able to benefit from unlabeled data.  
                The idea of manifold regularization is to extract useful information from 
Davis King's avatar
Davis King committed
711
                unlabeled data by first defining which data samples are "close" to each other 
Davis King's avatar
Davis King committed
712
713
                (perhaps by using their 3 <a href="#find_k_nearest_neighbors">nearest neighbors</a>) 
                and then adding a term to 
Davis King's avatar
Davis King committed
714
                the above function that penalizes any decision rule which produces 
Davis King's avatar
Davis King committed
715
                different outputs on data samples which we have designated as being close.
Davis King's avatar
Davis King committed
716
717
718
               </p>
                
                <p>
Davis King's avatar
Davis King committed
719
720
                It turns out that it is possible to transform these manifold regularized learning
                problems into the normal form shown above by applying a certain kind of 
Davis King's avatar
Davis King committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
                preprocessing to all our data samples.  Once this is done we can use a 
                normal learning algorithm, such as the <a href="#svm_c_linear_trainer">svm_c_linear_trainer</a>, 
                on just the
                labeled data samples and obtain the same output as the manifold regularized
                learner would have produced.  
               </p>
                
                <p>
                The linear_manifold_regularizer is a tool for creating this preprocessing 
                transformation.  In particular, the transformation is linear.  That is, it 
                is just a matrix you multiply with all your samples.  For a more detailed 
                discussion of this topic you should consult the following paper.  In 
                particular, see section 4.2.  This object computes the inverse T matrix 
                described in that section.
Davis King's avatar
Davis King committed
735
736
737
738
739
               <blockquote>
                    Linear Manifold Regularization for Large Scale Semi-supervised Learning
                    by Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin
               </blockquote>
               </p>
Davis King's avatar
Davis King committed
740

Davis King's avatar
Davis King committed
741
742
743
744
745
746
747
         </description>
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
      </component>
      
      
Davis King's avatar
Davis King committed
748
749
750
751
752
753
754
755
   <!-- ************************************************************************* -->
      
      <component>
         <name>empirical_kernel_map</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/empirical_kernel_map_abstract.h</spec_file>
         <description>
            <p>
Davis King's avatar
Davis King committed
756
                This object represents a map from objects of sample_type (the kind of object 
Davis King's avatar
Davis King committed
757
                a <a href="dlib/svm/kernel_abstract.h.html#Kernel_Function_Objects">kernel function</a> 
Davis King's avatar
Davis King committed
758
759
760
761
762
763
                operates on) to finite dimensional column vectors which 
                represent points in the kernel feature space defined by whatever kernel 
                is used with this object. 
            </p>

            <p>
Davis King's avatar
Davis King committed
764
765
766
                To use the empirical_kernel_map you supply it with a particular kernel and a set of 
                basis samples.  After that you can present it with new samples and it will project 
                them into the part of kernel feature space spanned by your basis samples.   
Davis King's avatar
Davis King committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
            </p>
                
            <p>
                This means the empirical_kernel_map is a tool you can use to very easily kernelize 
                any algorithm that operates on column vectors.  All you have to do is select a 
                set of basis samples and then use the empirical_kernel_map to project all your 
                data points into the part of kernel feature space spanned by those basis samples.
                Then just run your normal algorithm on the output vectors and it will be effectively 
                kernelized.  
            </p>

            <p>
                Regarding methods to select a set of basis samples, if you are working with only a 
                few thousand samples then you can just use all of them as basis samples.  
                Alternatively, the 
                <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a> 
Davis King's avatar
Davis King committed
783
784
                often works well for selecting a basis set.  I also find that picking a 
                <a href="algorithms.html#random_subset_selector">random subset</a> typically works well.
Davis King's avatar
Davis King committed
785
786
            </p>
         </description>
Davis King's avatar
Davis King committed
787
788
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
Davis King's avatar
Davis King committed
789
            <example>linear_manifold_regularizer_ex.cpp.html</example>
Davis King's avatar
Davis King committed
790
         </examples>
Davis King's avatar
Davis King committed
791
792
793
      </component>
      
      
794
795
796
797
798
799
800
801
802
803
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>kcentroid</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kcentroid_abstract.h</spec_file>
         <description>

                This object represents a weighted sum of sample points in a kernel induced
Davis King's avatar
Davis King committed
804
                feature space.  It can be used to kernelize any algorithm that requires only
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
                the ability to perform vector addition, subtraction, scalar multiplication,
                and inner products.  

                  <p>
                An example use of this object is as an online algorithm for recursively estimating 
                the centroid of a sequence of training points.  This object then allows you to 
                compute the distance between the centroid and any test points.  So you can use 
                this object to predict how similar a test point is to the data this object has 
                been trained on (larger distances from the centroid indicate dissimilarity/anomalous 
                points).  
                  </p>

                  <p>
                The object internally keeps a set of "dictionary vectors" 
                that are used to represent the centroid.  It manages these vectors using the 
                sparsification technique described in the paper The Kernel Recursive Least 
                Squares Algorithm by Yaakov Engel.  This technique allows us to keep the 
                number of dictionary vectors down to a minimum.  In fact, the object has a 
                user selectable tolerance parameter that controls the trade off between 
                accuracy and number of stored dictionary vectors.
                  </p>

         </description>

         <examples>
            <example>kcentroid_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>train_probabilistic_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            <p>
Davis King's avatar
Davis King committed
844
845
               Trains a <a href="#probabilistic_function">probabilistic_function</a> using 
               some sort of binary classification trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or
Davis King's avatar
Davis King committed
846
               <a href="#krr_trainer">krr_trainer</a>.
847
            </p>
Davis King's avatar
Davis King committed
848
            The probability model is created by using the technique described in the following papers:
849
850
851
            <blockquote>
                Probabilistic Outputs for Support Vector Machines and
                Comparisons to Regularized Likelihood Methods by 
Davis King's avatar
Davis King committed
852
                John C. Platt.  March 26, 1999
853
            </blockquote>
Davis King's avatar
Davis King committed
854
855
856
857
            <blockquote>
                A Note on Platt's Probabilistic Outputs for Support Vector Machines
                by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
            </blockquote>
858
859
860
861
862
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
Davis King's avatar
Davis King committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>probabilistic</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This is a trainer adapter which simply runs the trainer it is given though the
            <a href="#train_probabilistic_decision_function">train_probabilistic_decision_function</a>
            function.  
         </description>
                                 
877
878
879
880
881
882
883
884
885
886
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>rbf_network_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rbf_network_abstract.h</spec_file>
         <description>
               Trains a radial basis function network and outputs a <a href="#decision_function">decision_function</a>. 
Davis King's avatar
Davis King committed
887
               This object can be used for either regression or binary classification problems.
Davis King's avatar
Davis King committed
888
889
890
               It's worth pointing out that this object is essentially an unregularized version 
               of <a href="#krr_trainer">kernel ridge regression</a>.  This means 
               you should really prefer to use kernel ridge regression instead.
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>rvm_regression_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
         <description>
            <p>
               Trains a relevance vector machine for solving regression problems.  
               Outputs a <a href="#decision_function">decision_function</a> that represents the learned 
               regression function. 
            </p>
               The implementation of the RVM training algorithm used by this library is based
               on the following paper:
               <blockquote>
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.
               </blockquote>
         </description>
         <examples>
            <example>rvm_regression_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      
      <component>
         <name>rvm_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
         <description>
            <p>
               Trains a relevance vector machine for solving binary classification problems.  
               Outputs a <a href="#decision_function">decision_function</a> that represents the learned classifier. 
            </p>
               The implementation of the RVM training algorithm used by this library is based
               on the following paper:
               <blockquote>
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.
               </blockquote>
         </description>
         <examples>
            <example>rvm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
948
949
950
951
952
953
954
955
956
957
958
959
   <!-- ************************************************************************* -->

      <component>
         <name>krr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/krr_trainer_abstract.h</spec_file>
         <description>
            <p>
               Performs kernel ridge regression and outputs a <a href="#decision_function">decision_function</a> that 
               represents the learned function. 
            </p>
            The implementation is done using the <a href="#empirical_kernel_map">empirical_kernel_map</a> and 
Davis King's avatar
Davis King committed
960
961
962
963
            <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a> to kernelize
            the <a href="#rr_trainer">rr_trainer</a> object.  Thus it allows you to run the algorithm on large 
            datasets and obtain sparse outputs.  It is also capable of automatically estimating its 
            regularization parameter using leave-one-out cross-validation.
Davis King's avatar
Davis King committed
964
965
966
967
968
969
970
971
         </description>
         <examples>
            <example>krr_regression_ex.cpp.html</example>
            <example>krr_classification_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
   <!-- ************************************************************************* -->

      <component>
         <name>rr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rr_trainer_abstract.h</spec_file>
         <description>
            <p>
               Performs linear ridge regression and outputs a <a href="#decision_function">decision_function</a> that 
               represents the learned function.  In particular, this object can only be used with
               the <a href="#linear_kernel">linear_kernel</a>.  It is optimized for the linear case where
               the number of features in each sample vector is small (i.e. on the order of 1000 or less since the 
               algorithm is cubic in the number of features.).  
               If you want to use a nonlinear kernel then you should use the <a href="#krr_trainer">krr_trainer</a>.
            </p>
              This object is capable of automatically estimating its regularization parameter using 
              leave-one-out cross-validation.  
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
   <!-- ************************************************************************* -->

      <component>
         <name>svr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svr_trainer_abstract.h</spec_file>
         <description>
            <p>
                This object implements a trainer for performing epsilon-insensitive support 
                vector regression.  It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
            </p>
                The implementation of the eps-SVR training algorithm used by this object is based
                on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
Davis King's avatar
Davis King committed
1012
1013
1014
         <examples>
            <example>svr_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
1015
1016
1017
                                 
      </component>
      
1018
1019
1020
1021
1022
   <!-- ************************************************************************* -->

      <component>
         <name>svm_nu_trainer</name>
         <file>dlib/svm.h</file>
Davis King's avatar
Davis King committed
1023
         <spec_file link="true">dlib/svm/svm_nu_trainer_abstract.h</spec_file>
1024
1025
         <description>
            <p>
Davis King's avatar
Davis King committed
1026
1027
               Trains a nu support vector machine for solving binary classification problems and 
               outputs a <a href="#decision_function">decision_function</a>. 
Davis King's avatar
Davis King committed
1028
               It is implemented using the <a href="optimization.html#solve_qp2_using_smo">SMO</a> algorithm.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
            </p>
               The implementation of the nu-svm training algorithm used by this library is based
               on the following excellent papers:
               <ul>
                  <li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1041
            <example>model_selection_ex.cpp.html</example>
1042
1043
1044
1045
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
   <!-- ************************************************************************* -->

      <component>
         <name>svm_one_class_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_one_class_trainer_abstract.h</spec_file>
         <description>
            <p>
               Trains a one-class support vector classifier and outputs a <a href="#decision_function">decision_function</a>. 
               It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
            </p>
               The implementation of the one-class training algorithm used by this library is based
               on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1068
   <!-- ************************************************************************* -->
Davis King's avatar
Davis King committed
1069
1070
1071
1072
1073
1074
1075

      <component>
         <name>svm_c_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_trainer_abstract.h</spec_file>
         <description>
            <p>
Davis King's avatar
Davis King committed
1076
1077
               Trains a C support vector machine for solving binary classification problems 
               and outputs a <a href="#decision_function">decision_function</a>. 
Davis King's avatar
Davis King committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
               It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
            </p>
               The implementation of the C-SVM training algorithm used by this library is based
               on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
Davis King's avatar
Davis King committed
1092
1093
1094
1095
1096
1097
1098

      <component>
         <name>svm_c_linear_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_linear_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training the C formulation of 
Davis King's avatar
Davis King committed
1099
1100
1101
                a support vector machine to solve binary classification problems. 
                It is optimized for the case where linear kernels are used and  
                is implemented using the <a href="optimization.html#oca">oca</a>  
Davis King's avatar
Davis King committed
1102
1103
1104
1105
                optimizer and uses the exact line search described in the 
                following paper:
                <blockquote>
                    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Davis King's avatar
Davis King committed
1106
1107
                      by  Vojtech Franc, Soren Sonnenburg; Journal of Machine Learning 
                      Research, 10(Oct):2157--2192, 2009. 
Davis King's avatar
Davis King committed
1108
1109
                </blockquote>
         </description>
Davis King's avatar
Davis King committed
1110
1111
1112
         <examples>
            <example>svm_sparse_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
1113
1114
1115
                                 
      </component>
      
Davis King's avatar
Davis King committed
1116
1117
1118
1119
1120
1121
1122
1123
   <!-- ************************************************************************* -->

      <component>
         <name>svm_c_ekm_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_ekm_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training the C formulation of 
Davis King's avatar
Davis King committed
1124
1125
                a support vector machine for solving binary classification problems.   
                It is implemented using the <a href="#empirical_kernel_map">empirical_kernel_map</a>
Davis King's avatar
Davis King committed
1126
                to kernelize the <a href="#svm_c_linear_trainer">svm_c_linear_trainer</a>.  This makes it a very fast algorithm
Davis King's avatar
Davis King committed
1127
                capable of learning from very large datasets.
Davis King's avatar
Davis King committed
1128
1129
1130
1131
1132

         </description>
                                 
      </component>
      
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
   <!-- ************************************************************************* -->

      <component>
         <name>normalized_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a container for another function
                object and an instance of the <a href="#vector_normalizer">vector_normalizer</a> object.  

                It automatically normalizes all inputs before passing them
                off to the contained function object.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->


      <component>
         <name>probabilistic_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a binary decision function for use with
Davis King's avatar
Davis King committed
1161
                kernel-based learning-machines.  It returns an 
1162
1163
1164
1165
1166
1167
1168
1169
1170
                estimate of the probability that a given sample is in the +1 class. 
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
Davis King's avatar
Davis King committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

      <component>
         <name>probabilistic_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a binary decision function for use with
                any kind of binary classifier.  It returns an 
                estimate of the probability that a given sample is in the +1 class. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->
1184
1185
1186
1187
1188
1189
1190
1191

      <component>
         <name>distance_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a point in kernel induced feature space. 
                You may use this object to find the distance from the point it 
Davis King's avatar
Davis King committed
1192
1193
                represents to points in input space as well as other points
                represented by distance_functions.
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
1205
                This object represents a classification or regression function that was 
1206
1207
                learned by a kernel based learning algorithm.  Therefore, it is a function 
                object that takes a sample object and returns a scalar value.
1208
1209
1210
1211
1212
1213
1214
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_one_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_one_decision_function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out
                of a set of binary classifiers.  Each binary classifier
                is used to vote for the correct multiclass label using a 
                one vs. one strategy.  Therefore, if you have N classes then
                there will be N*(N-1)/2 binary classifiers inside this object.
         </description>
Davis King's avatar
Davis King committed
1228
1229
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1230
            <example>custom_trainer_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1231
         </examples>
Davis King's avatar
Davis King committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_one_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_one_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for turning a bunch of binary classifiers
                into a multiclass classifier.  It does this by training the binary
                classifiers in a one vs. one fashion.  That is, if you have N possible
                classes then it trains N*(N-1)/2 binary classifiers which are then used
                to vote on the identity of a test sample.
         </description>
Davis King's avatar
Davis King committed
1248
1249
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1250
            <example>custom_trainer_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1251
         </examples>
Davis King's avatar
Davis King committed
1252
1253
1254
                                 
      </component>
      
Davis King's avatar
Davis King committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_all_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_all_decision_function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out
                of a set of binary classifiers.  Each binary classifier
                is used to vote for the correct multiclass label using a 
                one vs. all strategy.  Therefore, if you have N classes then
                there will be N binary classifiers inside this object.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
   <!-- ************************************************************************* -->
      
      <component>
         <name>multiclass_linear_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out of a set of 
                binary classifiers.  Each binary classifier is used to vote for the 
                correct multiclass label using a one vs. all strategy.  Therefore, 
                if you have N classes then there will be N binary classifiers inside 
                this object.  Additionally, this object is linear in the sense that
                each of these binary classifiers is a simple linear plane.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_all_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_all_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for turning a bunch of binary classifiers
                into a multiclass classifier.  It does this by training the binary
                classifiers in a one vs. all fashion.  That is, if you have N possible
                classes then it trains N binary classifiers which are then used
                to vote on the identity of a test sample.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_multiclass_linear_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_multiclass_linear_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training a multiclass support 
                vector machine.  It is optimized for the case where linear kernels 
                are used and implemented using the <a href="optimization.html#structural_svm_problem">structural_svm_problem</a>
                object.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
   <!-- ************************************************************************* -->
      
      <component>
         <name>projection_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
               This object represents a function that takes a data sample and projects
               it into kernel feature space.  The result is a real valued column vector that 
Davis King's avatar
Davis King committed
1328
1329
1330
               represents a point in a kernel feature space.   Instances of
               this object are created using the 
               <a href="#empirical_kernel_map">empirical_kernel_map</a>.
Davis King's avatar
Davis King committed
1331
         </description>
Davis King's avatar
Davis King committed
1332
1333
1334
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
1335
1336
1337
                                 
      </component>
      
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
   <!-- ************************************************************************* -->
      
      <component>
         <name>offset_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a kernel with a fixed value offset
                added to it.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>linear_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a linear function kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sigmoid_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a sigmoid kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>polynomial_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a polynomial kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>radial_basis_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a radial basis function kernel for use with
                kernel learning machines.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
Davis King's avatar
Davis King committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_linear_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a linear function kernel for use with
                kernel learning machines that operate on 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
Davis King's avatar
Davis King committed
1418
1419
1420
         <examples>
            <example>svm_sparse_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sparse_sigmoid_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a sigmoid kernel for use with
                kernel learning machines that operate on 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sparse_polynomial_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a polynomial kernel for use with
                kernel learning machines that operate 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_radial_basis_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a radial basis function kernel for use with
                kernel learning machines that operate 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
      
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_binary_classification_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
             This function simply takes two vectors, the first containing feature vectors and
             the second containing labels, and reports back if the two could possibly 
             contain data for a well formed classification problem.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_learning_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
             This function simply takes two vectors, the first containing feature vectors and
             the second containing labels, and reports back if the two could possibly 
             contain data for a well formed learning problem.  In this case it just means
             that the two vectors have the same length and aren't empty.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
   <!-- ************************************************************************* -->
      
      <component>
         <name>select_all_distinct_labels</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/multiclass_tools_abstract.h</spec_file>
         <description>
              This is a function which determines all distinct values present in a 
              std::vector and returns the result.  
         </description>
                                 
      </component>
      
1509
1510
   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
      <component>
         <name>simplify_linear_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/simplify_linear_decision_function_abstract.h</spec_file>
         <description>
            This is a set of functions that takes various forms of linear <a href="#decision_function">decision functions</a>
            and collapses them down so that they only compute a single dot product when invoked. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
      <component>
         <name>randomize_samples</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
               Randomizes the order of samples in a column vector containing sample data.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>rank_features</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
             Finds a ranking of the top N (a user supplied parameter) features in a set of data 
             from a two class classification problem.  It  
              does this by computing the distance between the centroids of both classes in kernel defined 
              feature space.  Good features are then ones that result in the biggest separation between
              the two centroids. 
Davis King's avatar
Davis King committed
1548
1549
1550
1551
1552
1553
1554
         </description>
         <examples>
            <example>rank_features_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
   <!-- ************************************************************************* -->
      
      <component>
         <name>load_libsvm_formatted_data</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is a function that loads the data from a file that uses
            the LIBSVM format.  It loads the data into a std::vector of
            <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
            If you want to load data into dense vectors (i.e.
            dlib::matrix objects) then you can use the <a href="#sparse_to_dense">sparse_to_dense</a>
Davis King's avatar
Davis King committed
1567
1568
1569
1570
            function to perform the conversion.  Also, some LIBSVM formatted files number
            their features beginning with 1 rather than 0.  If this bothers you, then you
            can fix it by using the <a href="#fix_nonzero_indexing">fix_nonzero_indexing</a> function
            on the data after it is loaded.
Davis King's avatar
Davis King committed
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>save_libsvm_formatted_data</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is actually a pair of overloaded functions.  Between the two of them
            they let you save <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse</a> 
            or dense data vectors to file using the LIBSVM format.  
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_to_dense</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is a simple function that takes a std::vector of 
            <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a> 
            and returns to you the equivalent std::vector of dense vectors. 
         </description>
      </component>
      
Davis King's avatar
Davis King committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
   <!-- ************************************************************************* -->
      
      <component>
         <name>fix_nonzero_indexing</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is a simple function that takes a std::vector of 
            <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a> 
            and makes sure they are zero-indexed (e.g. makes sure the first index value is zero).   
         </description>
      </component>
      
Davis King's avatar
Davis King committed
1614
1615
1616
   <!-- ************************************************************************* -->
      
      <component>
Davis King's avatar
Davis King committed
1617
         <name>find_gamma_with_big_centroid_gap</name>
Davis King's avatar
Davis King committed
1618
1619
1620
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
1621
1622
1623
1624
            This is a function that tries to pick a reasonable default value for the
            gamma parameter of the <a href="#radial_basis_kernel">radial_basis_kernel</a>.  It
            picks the parameter that gives the largest separation between the centroids, in 
            kernel feature space, of two classes of data.
Davis King's avatar
Davis King committed
1625
1626
1627
1628
1629
1630
1631
         </description>
         <examples>
            <example>rank_features_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
   <!-- ************************************************************************* -->
      
      <component>
         <name>compute_mean_squared_distance</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
            This is a function that simply finds the average squared distance between all
            pairs of a set of data samples.  It is often convenient to use the reciprocal
            of this value as the estimate of the gamma parameter of the 
            <a href="#radial_basis_kernel">radial_basis_kernel</a>.  
         </description>
                                 
      </component>
      
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.
         </description>
Davis King's avatar
Davis King committed
1657
1658
1659
         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
         </examples>
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>verbose_batch</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.  This function
            generates a batch_trainer that will print status messages to standard
            output so that you can observe the progress of a training algorithm.
         </description>
Davis King's avatar
Davis King committed
1675
1676
1677
         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
         </examples>
1678
1679
1680
                                 
      </component>
      
Davis King's avatar
Davis King committed
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch_cached</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects that are setup
            to use a kernel matrix cache.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>verbose_batch_cached</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.  This function
            generates a batch_trainer that will print status messages to standard
            output so that you can observe the progress of a training algorithm.
            It will also be configured to use a kernel matrix cache.
         </description>
                                 
      </component>
      
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
               This is a batch trainer object that is meant to wrap online trainer objects 
               that create <a href="#decision_function">decision_functions</a>.  It
               turns an online learning algorithm such as <a href="#svm_pegasos">svm_pegasos</a>
               into a batch learning object.  This allows you to use objects like
               svm_pegasos with functions (e.g. <a href="#cross_validate_trainer">cross_validate_trainer</a>)
               that expect batch mode training objects. 
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
Davis King's avatar
Davis King committed
1731
         <name>null_trainer_type</name>
1732
         <file>dlib/svm.h</file>
Davis King's avatar
Davis King committed
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
         <spec_file link="true">dlib/svm/null_trainer_abstract.h</spec_file>
         <description>
                This object is a simple tool for turning a <a href="#decision_function">decision_function</a> 
                (or any object with an interface compatible with decision_function)
                into a trainer object that always returns the original decision
                function when you try to train with it.  

               <p>
                dlib contains a few "training post processing" algorithms (e.g. 
                <a href="#reduced">reduced</a> and <a href="#reduced2">reduced2</a>).  These tools 
                take in a trainer object,
                tell it to perform training, and then they take the output decision
                function and do some kind of post processing to it.  The null_trainer_type 
                object is useful because you can use it to run an already
                learned decision function through the training post processing
                algorithms by turning a decision function into a null_trainer_type
                and then giving it to a post processor.  
               </p>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>null_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/null_trainer_abstract.h</spec_file>
1761
1762
         <description>
            This is a convenience function for creating 
Davis King's avatar
Davis King committed
1763
            <a href="#null_trainer_type">null_trainer_type</a>
1764
1765
1766
1767
1768
            objects.
         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_c1_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#roc_trainer_type">roc_trainer_type</a> objects that are
            setup to pick a point on the ROC curve with respect to the +1 class.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_c2_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#roc_trainer_type">roc_trainer_type</a> objects that are
            setup to pick a point on the ROC curve with respect to the -1 class.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_trainer_type</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
                This object is a simple trainer post processor that allows you to 
                easily adjust the bias term in a trained decision_function object.
                That is, this object lets you pick a point on the ROC curve and 
                it will adjust the bias term appropriately.  

               <p>
                So for example, suppose you wanted to set the bias term so that
                the accuracy of your decision function on +1 labeled samples was 99%.
                To do this you would use an instance of this object declared as follows:
                <tt>roc_trainer_type&lt;trainer_type&gt;(your_trainer, 0.99, +1);</tt>
               </p>
         </description>
                                 
      </component>
      
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
   <!-- ************************************************************************* -->
      
      <component>
         <name>reduced_decision_function_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
               This is a batch trainer object that is meant to wrap other batch trainer objects 
               that create <a href="#decision_function">decision_function</a> objects.
               It performs post processing on the output decision_function objects 
               with the intent of representing the decision_function with fewer 
Davis King's avatar
Davis King committed
1830
               basis vectors.
1831
1832
1833
1834
1835
1836
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
      <component>
         <name>reduced</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#reduced_decision_function_trainer">reduced_decision_function_trainer</a>
            objects.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
      <component>
         <name>reduced2</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#reduced_decision_function_trainer2">reduced_decision_function_trainer2</a>
            objects.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>reduced_decision_function_trainer2</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
               <p>
               This is a batch trainer object that is meant to wrap other batch trainer objects 
               that create <a href="#decision_function">decision_function</a> objects.
               It performs post processing on the output decision_function objects 
               with the intent of representing the decision_function with fewer 
Davis King's avatar
Davis King committed
1878
               basis vectors.  
1879
1880
1881
1882
1883
               </p>
               <p>
               It begins by performing the same post processing as
               the <a href="#reduced_decision_function_trainer">reduced_decision_function_trainer</a>
               object but it also performs a global gradient based optimization 
Davis King's avatar
Davis King committed
1884
1885
               to further improve the results.  The gradient based optimization is
               implemented using the <a href="#approximate_distance_function">approximate_distance_function</a> routine.
1886
1887
1888
1889
1890
1891
1892
1893
1894
               </p>
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
Davis King's avatar
Davis King committed
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
   <!-- ************************************************************************* -->
      
      <component>
         <name>approximate_distance_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
              This function attempts to find a <a href="#distance_function">distance_function</a> object which is close
              to a target distance_function.  That is, it searches for an X such that target(X) is
              minimized.  Critically, X may be set to use fewer basis vectors than the target.   

              <p>The optimization begins with an initial guess supplied by the user 
              and searches for an X which locally minimizes target(X).  Since
              this problem can have many local minima the quality of the starting point
              can significantly influence the results.   </p>
         </description>
                                 
      </component>
      
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_binary_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            Tests a <a href="#decision_function">decision_function</a> that represents a binary decision function and
            returns the test accuracy.  

         </description>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_multiclass_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_multiclass_trainer_abstract.h</spec_file>
         <description>
            Tests a multiclass decision function (e.g. <a href="#one_vs_one_decision_function">one_vs_one_decision_function</a>)
            and returns a confusion matrix describing the results.
         </description>
Davis King's avatar
Davis King committed
1938
1939
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1940
            <example>custom_trainer_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1941
         </examples>
Davis King's avatar
Davis King committed
1942
1943
1944
                                 
      </component>
      
1945
1946
1947
1948
1949
1950
1951
1952
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>cross_validate_trainer_threaded</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/svm_threaded_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
1953
               Performs k-fold cross validation on a user supplied binary classification trainer object such
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
               as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or <a href="#rbf_network_trainer">rbf_network_trainer</a>.  
               This function does the same thing as <a href="#cross_validate_trainer">cross_validate_trainer</a>
               except this function also allows you to specify how many threads of execution to use.
               So you can use this function to take advantage of a multi-core system to perform
               cross validation faster.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
1969
               Performs k-fold cross validation on a user supplied binary classification trainer object such
1970
1971
1972
1973
               as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or <a href="#rbf_network_trainer">rbf_network_trainer</a>.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1974
            <example>model_selection_ex.cpp.html</example>
1975
1976
1977
1978
         </examples>
                                 
      </component>
      
Davis King's avatar
Davis King committed
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_multiclass_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_multiclass_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied multiclass classification trainer object such
            as the <a href="#one_vs_one_trainer">one_vs_one_trainer</a>.  The result is described by a 
            confusion matrix.
         </description>
Davis King's avatar
Davis King committed
1990
1991
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1992
            <example>custom_trainer_ex.cpp.html</example>
Davis King's avatar
Davis King committed
1993
         </examples>
Davis King's avatar
Davis King committed
1994
1995
1996
                                 
      </component>
      
Davis King's avatar
Davis King committed
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_regression_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_regression_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied regression trainer object such
            as the <a href="#svr_trainer">svr_trainer</a> and returns the mean squared error.
         </description>
         <examples>
            <example>svr_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_regression_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_regression_trainer_abstract.h</spec_file>
         <description>
            Tests a regression function (e.g. <a href="#decision_function">decision_function</a>)
            and returns the mean squared error.
         </description>
                                 
      </component>
      
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
   <!-- ************************************************************************* -->
      
   </components>

   <!-- ************************************************************************* -->


</doc>