optimization.xml 30.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Optimization</title>

   <!-- ************************************************************************* -->

   <body>
      <br/><br/>

         <p>
            This page documents library components that attempt to find the 
Davis King's avatar
Davis King committed
14
            minimum or maximum of a user supplied function.   An introduction
Davis King's avatar
Davis King committed
15
            to the general purpose non-linear optimizers in this section can be
Davis King's avatar
Davis King committed
16
17
18
            found <a href="optimization_ex.cpp.html">here</a>.  For an example
            showing how to use the non-linear least squares routines look 
            <a href="least_squares_ex.cpp.html">here</a>.
19
20
21
22
23
24
25
26
27
         </p>

   </body>

   <!-- ************************************************************************* -->

   <menu width="150">
    <top>
      <section>
28
         <name>General Purpose Optimizers</name>
29
30
31
32
33
34
35
36
         <item>find_min</item> 
         <item>find_min_single_variable</item> 
         <item>find_min_using_approximate_derivatives</item> 
         <item>find_min_bobyqa</item> 
         <item>find_max</item> 
         <item>find_max_single_variable</item> 
         <item>find_max_using_approximate_derivatives</item> 
         <item>find_max_bobyqa</item> 
Davis King's avatar
Davis King committed
37
38
         <item>find_max_trust_region</item> 
         <item>find_min_trust_region</item> 
39
40
41
42
43
44
45
46
      </section>

      <section>
         <name>Special Purpose Optimizers</name>
         <item>solve_qp_using_smo</item> 
         <item>solve_qp2_using_smo</item> 
         <item>solve_qp3_using_smo</item> 
         <item>oca</item> 
Davis King's avatar
Davis King committed
47
         <item>structural_svm_problem</item> 
Davis King's avatar
Davis King committed
48
49
         <item>solve_least_squares</item> 
         <item>solve_least_squares_lm</item> 
50
         <item>solve_trust_region_subproblem</item> 
Davis King's avatar
Davis King committed
51
         <item>max_cost_assignment</item> 
52
53
54
55
56
57
      </section>

      <section>
         <name>Strategies</name>
         <item>cg_search_strategy</item>
         <item>bfgs_search_strategy</item>
Davis King's avatar
Davis King committed
58
         <item>newton_search_strategy</item>
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
         <item>lbfgs_search_strategy</item>
         <item>objective_delta_stop_strategy</item>
         <item>gradient_norm_stop_strategy</item>
      </section>

      <section>
         <name>Helper Routines</name>
         <item>derivative</item> 
         <item>negate_function</item> 
         <item>make_line_search_function</item> 
         <item>poly_min_extrap</item> 
         <item>lagrange_poly_min_extrap</item> 
         <item>line_search</item> 
      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   
   <!-- ************************************************************************* -->
      
      <component>
         <name>derivative</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that numerically computes the derivative of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>negate_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that computes the negation of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>make_line_search_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This is a function that takes another function f(x) as input and returns
            a function object l(z) = f(start + z*direction).   It is useful for
            turning multi-variable functions into single-variable functions for
            use with the <a href="#line_search">line_search</a> routine.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the 3rd degree polynomial that interpolates a 
            set of points and returns you the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>lagrange_poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the second order polynomial that interpolates a 
            set of points and returns you the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>line_search</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            Performs a gradient based line search on a given function and returns the input
            that makes the function significantly smaller.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->

      <component>
         <name>cg_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the Polak-Ribiere conjugate gradient method
                for determining this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  So it is capable of handling problems
                with a very large number of variables.  However, it is generally
                not as good as the L-BFGS algorithm (see the 
                <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a> class).
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>bfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is quadratic in the number
                of variables to be optimized.  It is generally very effective but 
                if your problem has a very large number of variables then it isn't 
Davis King's avatar
Davis King committed
209
                appropriate.  Instead, you should try the <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a>.
210
211
212
213
214
215
216
217
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

Davis King's avatar
Davis King committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
   <!-- ************************************************************************* -->
      
      <component>
         <name>newton_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular routine 
                is an implementation of the newton method for determining this direction.  
                That means using it requires you to supply a method for
                creating hessian matrices for the problem you are trying to optimize.

               <p>
               Note also that this is actually a helper function for creating 
               <a href="dlib/optimization/optimization_search_strategies_abstract.h.html#newton_search_strategy_obj"
                     >newton_search_strategy_obj</a> objects.  
               </p>

         </description>
                                 
      </component>

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
   <!-- ************************************************************************* -->
      
      <component>
         <name>lbfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the L-BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  This makes it an excellent method 
                to use when an optimization problem has a large number of variables.
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>objective_delta_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                change in the objective function from one iteration to the next and 
                bases its decision on how large this change is.  If the change
                is below a user given threshold then the search stops.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>gradient_norm_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                norm (i.e. the length) of the current gradient vector and
                stops if it is smaller than a user given threshold.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_min_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained minimization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
      <component>
         <name>solve_trust_region_subproblem</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             This function solves the following optimization problem:
<pre>
Minimize: f(p) == 0.5*trans(p)*B*p + trans(g)*p
subject to the following constraint:
   length(p) &lt;= radius
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
348
349
350
351
352
353
354
355
356
357
358
      <component>
         <name>solve_qp_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b
   subject to the following constraints:
      sum(alpha) == C 
      min(alpha) >= 0 
Davis King's avatar
Davis King committed
359
   Where f is convex.  This means that Q should be symmetric and positive-semidefinite.
360
361
362
363
364
365
</pre>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp2_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp2_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha 
   subject to the following constraints:
      sum(alpha) == nu*y.size() 
      0 &lt;= min(alpha) &amp;&amp; max(alpha) &lt;= 1 
      trans(y)*alpha == 0
Davis King's avatar
Davis King committed
380
381
382

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
Davis King's avatar
Davis King committed
383
384
385
386
387
388
389
390
</pre>
<br/>
                This object implements the strategy used by the LIBSVM tool.  The following papers
                can be consulted for additional details:
               <ul>
                  <li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
Davis King's avatar
Davis King committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp3_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp3_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(p)*alpha
   subject to the following constraints:
        for all i such that y(i) == +1:  0 &lt;= alpha(i) &lt;= Cp 
        for all i such that y(i) == -1:  0 &lt;= alpha(i) &lt;= Cn 
        trans(y)*alpha == B 

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
Davis King's avatar
Davis King committed
417
                This object implements the strategy used by the LIBSVM tool.  The following papers
Davis King's avatar
Davis King committed
418
419
420
421
                can be consulted for additional details:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
Davis King's avatar
Davis King committed
422
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
Davis King's avatar
Davis King committed
423
424
                  <li>Working Set Selection Using Second Order Information for Training Support Vector Machines by
                     Fan, Chen, and Lin.  In the Journal of Machine Learning Research 2005.</li>
Davis King's avatar
Davis King committed
425
426
427
428
429
430
               </ul>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
431
432
433
434
435
436
437
438
   <!-- ************************************************************************* -->
      
      <component>
         <name>max_cost_assignment</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/max_cost_assignment_abstract.h</spec_file>
         <description>
            This function is an implementation of the Hungarian algorithm (also know as the Kuhn-Munkres algorithm).
Davis King's avatar
Davis King committed
439
440
441
442
443
            It solves the optimal assignment problem. For example, suppose you have an equal number of workers
            and jobs and you need to decide which workers to assign to which jobs. Some workers are better at 
            certain jobs than others. So you would like to find out how to assign them all to jobs such that 
            overall productivity is maximized. You can use this routine to solve this problem and others like it. 

Davis King's avatar
Davis King committed
444
445
446
447
         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
448
449
450
451
452
453
454
455
456
457
458
   <!-- ************************************************************************* -->
      
      <component>
         <name>oca</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_oca_abstract.h</spec_file>
         <description>
                This object is a tool for solving the following optimization problem:   
<pre>
   Minimize: f(w) == 0.5*dot(w,w) + C*R(w)

Davis King's avatar
Davis King committed
459
   Where R(w) is a user-supplied convex function and C > 0
Davis King's avatar
Davis King committed
460
461
462
463
464
465
466
467
</pre>
<br/>
<br/>

                For a detailed discussion you should consult the following papers
                from the Journal of Machine Learning Research:
                <blockquote>
                    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Davis King's avatar
Davis King committed
468
                      by  Vojtech Franc, Soren Sonnenburg; 10(Oct):2157--2192, 2009. 
Davis King's avatar
Davis King committed
469
470
471
                </blockquote>
                <blockquote>
                    Bundle Methods for Regularized Risk Minimization
Davis King's avatar
Davis King committed
472
                      by Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le; 11(Jan):311-365, 2010. 
Davis King's avatar
Davis King committed
473
474
475
476
477
478
                </blockquote>

         </description>
                                 
      </component>

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>find_min_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function defines the dlib interface to the BOBYQA software developed by M.J.D Powell.
            BOBYQA is a method for optimizing a function in the absence of derivative information.  
            Powell described it as a method that seeks the least value of a function of many 
            variables, by applying a trust region method that forms quadratic models by 
            interpolation.  There is usually some freedom in the interpolation conditions, 
            which is taken up by minimizing the Frobenius norm of the change to the second 
            derivative of the model, beginning with the zero matrix. The values of the variables 
            are constrained by upper and lower bounds.  

            <p>
            The following paper, published in 2009 by Powell, describes the
            detailed working of the BOBYQA algorithm.  

               <blockquote>
               The BOBYQA algorithm for bound constrained optimization 
               without derivatives by M.J.D. Powell
               </blockquote>
            </p>

            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_min_single_variable">find_min_single_variable</a>
               function.
            </p>

         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function is identical to the <a href="#find_min_bobyqa">find_min_bobyqa</a> routine 
            except that it negates the objective function before performing optimization.  
            Thus this function will attempt to find the maximizer of the objective rather than 
            the minimizer.
            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_max_single_variable">find_max_single_variable</a>
               function.
            </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>
Davis King's avatar
Davis King committed
563
564
565

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
566
567
568
569
570
571
572
573
574
575
576
577
      <component>
         <name>solve_least_squares</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses a method
            which combines the traditional Levenberg-Marquardt technique with a quasi-newton
            approach.  It is appropriate for large residual problems (i.e. problems where the
            terms in the least squares function, the residuals, don't go to zero but remain
            large at the solution)
         </description>
                                 
Davis King's avatar
Davis King committed
578
579
580
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_least_squares_lm</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses 
            the traditional Levenberg-Marquardt technique. 
            It is appropriate for small residual problems (i.e. problems where the
            terms in the least squares function, the residuals, go to zero at the solution)
         </description>
                                 
Davis King's avatar
Davis King committed
596
597
598
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
599
600
601
602
      </component>

   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
      <component>
         <name>find_min_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             a trust region method.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             a trust region method.
         </description>
                                 
      </component>
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained maximization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
670
671
672
673
674
675
676
677
678
679
680
681
      <component>
         <name>structural_svm_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/structural_svm_problem_abstract.h</spec_file>
         <description>
                This object is a tool for solving the optimization problem associated 
                with a structural support vector machine.  A structural SVM is a supervised 
                machine learning method for learning to predict complex outputs.  This is
                contrasted with a binary classifier which makes only simple yes/no predictions.  
                A structural SVM, on the other hand, can learn to predict outputs as complex
                as entire parse trees.  To do this, it learns a function F(x,y) which measures 
                how well a particular data sample x matches a label y.  When used for prediction,
Davis King's avatar
Davis King committed
682
                the best label for a new x is then given by the y which maximizes F(x,y).   
Davis King's avatar
Davis King committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

                <br/>
                <br/>

                For further information you should consult the following paper: 
                <blockquote>
                    T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs, 
                    Machine Learning, 77(1):27-59, 2009.
                </blockquote>

                    Note that this object is essentially a tool for solving the 1-Slack structural
                    SVM with margin-rescaling.  Specifically, see Algorithm 3 in the above referenced 
                    paper.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      

703
704
705
706
707
708
709
   </components>

   <!-- ************************************************************************* -->


</doc>