svm_multiclass_linear_trainer.h 9.59 KB
Newer Older
1
2
3
4
5
6
// Copyright (C) 2011  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__ 
#define DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__

#include "svm_multiclass_linear_trainer_abstract.h"
Davis King's avatar
Davis King committed
7
#include "structural_svm_problem.h"
8
9
10
11
#include <vector>
#include "../optimization/optimization_oca.h"
#include "../matrix.h"
#include "sparse_vector.h"
12
#include "function.h"
13
14
15
16
17
18
19
20
21
22
23
24
25
26

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type,
        typename sample_type,
        typename label_type
        >
    class multiclass_svm_problem : public structural_svm_problem<matrix_type,
                                                                 std::vector<std::pair<unsigned long,typename matrix_type::type> > > 
    {
27
28
29
30
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object defines the optimization problem for the multiclass SVM trainer
                object at the bottom of this file.  
Davis King's avatar
Davis King committed
31
32
33
34
35
36
37
38
39

                The joint feature vectors used by this object, the PSI(x,y) vectors, are
                defined as follows:
                    PSI(x,0) = [x,0,0,0,0, ...,0]
                    PSI(x,1) = [0,x,0,0,0, ...,0]
                    PSI(x,2) = [0,0,x,0,0, ...,0]
                That is, if there are N labels then the joint feature vector has a
                dimension that is N times the dimension of a single x sample.  Also,
                note that we append a -1 value onto each x to account for the bias term.
40
41
        !*/

42
43
44
45
46
47
48
49
50
51
52
    public:
        typedef typename matrix_type::type scalar_type;
        typedef std::vector<std::pair<unsigned long,scalar_type> > feature_vector_type;

        multiclass_svm_problem (
            const std::vector<sample_type>& samples_,
            const std::vector<label_type>& labels_
        ) :
            samples(samples_),
            labels(labels_),
            distinct_labels(select_all_distinct_labels(labels_)),
53
            dims(max_index_plus_one(samples_)+1) // +1 for the bias
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        {}

        virtual long get_num_dimensions (
        ) const
        {
            return dims*distinct_labels.size();
        }

        virtual long get_num_samples (
        ) const 
        {
            return static_cast<long>(samples.size());
        }

        virtual void get_truth_joint_feature_vector (
            long idx,
            feature_vector_type& psi
        ) const 
        {
73
            assign(psi, samples[idx]);
74
            // Add a constant -1 to account for the bias term.
75
            psi.push_back(std::make_pair(dims-1,static_cast<scalar_type>(-1)));
76
77

            // Find which distinct label goes with this psi.
78
            const long label_idx = index_of_max(mat(distinct_labels) == labels[idx]);
79
80
81
82
83
84
85
86
87
88
89
90
91
92

            offset_feature_vector(psi, dims*label_idx);
        }

        virtual void separation_oracle (
            const long idx,
            const matrix_type& current_solution,
            scalar_type& loss,
            feature_vector_type& psi
        ) const 
        {
            scalar_type best_val = -std::numeric_limits<scalar_type>::infinity();
            unsigned long best_idx = 0;

Davis King's avatar
Davis King committed
93
94
            // Figure out which label is the best.  That is, what label maximizes
            // LOSS(idx,y) + F(x,y).  Note that y in this case is given by distinct_labels[i].
95
96
            for (unsigned long i = 0; i < distinct_labels.size(); ++i)
            {
Davis King's avatar
Davis King committed
97
                // Compute the F(x,y) part:
98
                // perform: temp == dot(relevant part of current solution, samples[idx]) - current_bias
99
                scalar_type temp = dot(mat(&current_solution(i*dims),dims-1), samples[idx]) - current_solution((i+1)*dims-1);
100

Davis King's avatar
Davis King committed
101
                // Add the LOSS(idx,y) part:
102
103
104
                if (labels[idx] != distinct_labels[i])
                    temp += 1;

Davis King's avatar
Davis King committed
105
                // Now temp == LOSS(idx,y) + F(x,y).  Check if it is the biggest we have seen.
106
107
108
109
110
111
112
                if (temp > best_val)
                {
                    best_val = temp;
                    best_idx = i;
                }
            }

113
            assign(psi, samples[idx]);
114
            // add a constant -1 to account for the bias term
115
            psi.push_back(std::make_pair(dims-1,static_cast<scalar_type>(-1)));
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

            offset_feature_vector(psi, dims*best_idx);

            if (distinct_labels[best_idx] == labels[idx])
                loss = 0;
            else
                loss = 1;
        }

    private:

        void offset_feature_vector (
            feature_vector_type& sample,
            const unsigned long val
        ) const
        {
            if (val != 0)
            {
                for (typename feature_vector_type::iterator i = sample.begin(); i != sample.end(); ++i)
                {
                    i->first += val;
                }
            }
        }


        const std::vector<sample_type>& samples;
        const std::vector<label_type>& labels;
        const std::vector<label_type> distinct_labels;
        const long dims;
    };


// ----------------------------------------------------------------------------------------

    template <
        typename K,
        typename label_type_ = typename K::scalar_type 
        >
    class svm_multiclass_linear_trainer
    {
    public:
        typedef label_type_ label_type;
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;

        typedef multiclass_linear_decision_function<kernel_type, label_type> trained_function_type;


167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        // You are getting a compiler error on this line because you supplied a non-linear kernel
        // to the svm_c_linear_trainer object.  You have to use one of the linear kernels with this
        // trainer.
        COMPILE_TIME_ASSERT((is_same_type<K, linear_kernel<sample_type> >::value ||
                             is_same_type<K, sparse_linear_kernel<sample_type> >::value ));

        svm_multiclass_linear_trainer (
        ) :
            C(1),
            eps(0.001),
            verbose(false)
        {
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void svm_multiclass_linear_trainer::set_epsilon()"
                << "\n\t eps_ must be greater than 0"
                << "\n\t eps_: " << eps_ 
                << "\n\t this: " << this
                );

            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const { return eps; }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

        void set_oca (
            const oca& item
        )
        {
            solver = item;
        }

        const oca get_oca (
        ) const
        {
            return solver;
        }

        const kernel_type get_kernel (
        ) const
        {
            return kernel_type();
        }

        void set_c (
            scalar_type C_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(C_ > 0,
                "\t void svm_multiclass_linear_trainer::set_c()"
                << "\n\t C must be greater than 0"
                << "\n\t C_:   " << C_ 
                << "\n\t this: " << this
                );

            C = C_;
        }

        const scalar_type get_c (
        ) const
        {
            return C;
        }

251
252
253
254
255
        trained_function_type train (
            const std::vector<sample_type>& all_samples,
            const std::vector<label_type>& all_labels
        ) const
        {
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            scalar_type svm_objective = 0;
            return train(all_samples, all_labels, svm_objective);
        }

        trained_function_type train (
            const std::vector<sample_type>& all_samples,
            const std::vector<label_type>& all_labels,
            scalar_type& svm_objective
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(all_samples,all_labels),
                "\t trained_function_type svm_multiclass_linear_trainer::train(all_samples,all_labels)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t all_samples.size():     " << all_samples.size() 
                << "\n\t all_labels.size():      " << all_labels.size() 
                );

274
275
276
            typedef matrix<scalar_type,0,1> w_type;
            w_type weights;
            multiclass_svm_problem<w_type, sample_type, label_type> problem(all_samples, all_labels);
277
278
279
            if (verbose)
                problem.be_verbose();

280
            problem.set_max_cache_size(0);
281
282
            problem.set_c(C);
            problem.set_epsilon(eps);
283

284
            svm_objective = solver(problem, weights);
285
286
287

            trained_function_type df;

288
            const long dims = max_index_plus_one(all_samples);
289
290
291
292
293
            df.labels  = select_all_distinct_labels(all_labels);
            df.weights = colm(reshape(weights, df.labels.size(), dims+1), range(0,dims-1));
            df.b       = colm(reshape(weights, df.labels.size(), dims+1), dims);
            return df;
        }
294
295
296
297
298
299

    private:
        scalar_type C;
        scalar_type eps;
        bool verbose;
        oca solver;
300
301
302
303
304
305
306
307
308
    };

// ----------------------------------------------------------------------------------------

}


#endif // DLIB_SVm_MULTICLASS_LINEAR_TRAINER_H__