simple_object_detector.h 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_ObJECT_DETECTOR_H__
#define DLIB_SIMPLE_ObJECT_DETECTOR_H__

#include "simple_object_detector_abstract.h"
#include "dlib/image_processing/object_detector.h"
#include "dlib/string.h"
#include "dlib/image_processing/scan_fhog_pyramid.h"
#include "dlib/svm/structural_object_detection_trainer.h"
#include "dlib/geometry.h"
#include "dlib/data_io/load_image_dataset.h"
#include "dlib/image_processing/remove_unobtainable_rectangles.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;

// ----------------------------------------------------------------------------------------

    struct simple_object_detector_training_options
    {
        simple_object_detector_training_options()
        {
            be_verbose = false;
            add_left_right_image_flips = false;
            num_threads = 4;
            detection_window_size = 80*80;
33
            C = 1;
34
35
36
37
38
39
        }

        bool be_verbose;
        bool add_left_right_image_flips;
        unsigned long num_threads;
        unsigned long detection_window_size;
40
        double C;
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    };

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        inline void pick_best_window_size (
            const std::vector<std::vector<rectangle> >& boxes,
            unsigned long& width,
            unsigned long& height,
            const unsigned long target_size
        )
        {
            // find the average width and height
            running_stats<double> avg_width, avg_height;
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                for (unsigned long j = 0; j < boxes[i].size(); ++j)
                {
                    avg_width.add(boxes[i][j].width());
                    avg_height.add(boxes[i][j].height());
                }
            }

            // now adjust the box size so that it is about target_pixels pixels in size
            double size = avg_width.mean()*avg_height.mean();
            double scale = std::sqrt(target_size/size);

            width = (unsigned long)(avg_width.mean()*scale+0.5);
            height = (unsigned long)(avg_height.mean()*scale+0.5);
            // make sure the width and height never round to zero.
            if (width == 0)
                width = 1;
            if (height == 0)
                height = 1;
        }

        inline bool contains_any_boxes (
            const std::vector<std::vector<rectangle> >& boxes
        )
        {
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                if (boxes[i].size() != 0)
                    return true;
            }
            return false;
        }

        inline void throw_invalid_box_error_message (
            const std::string& dataset_filename,
            const std::vector<std::vector<rectangle> >& removed,
Davis King's avatar
Davis King committed
93
            const simple_object_detector_training_options& options
94
95
96
97
98
99
        )
        {
            image_dataset_metadata::dataset data;
            load_image_dataset_metadata(data, dataset_filename);

            std::ostringstream sout;
Davis King's avatar
Davis King committed
100
            sout << "Error!  An impossible set of object boxes was given for training. ";
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            sout << "All the boxes need to have a similar aspect ratio and also not be ";
            sout << "smaller than about " << options.detection_window_size/16 << " pixels in area. ";
            sout << "The following images contain invalid boxes:\n";
            std::ostringstream sout2;
            for (unsigned long i = 0; i < removed.size(); ++i)
            {
                if (removed[i].size() != 0)
                {
                    const std::string imgname = data.images[i].filename;
                    sout2 << "  " << imgname << "\n";
                }
            }
            throw error("\n"+wrap_string(sout.str()) + "\n" + sout2.str());
        }
    }

// ----------------------------------------------------------------------------------------

    inline void train_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_output_filename,
122
        const simple_object_detector_training_options& options 
123
124
    )
    {
125
        if (options.C <= 0)
126
127
            throw error("Invalid C value given to train_simple_object_detector(), C must be > 0.");

128
        dlib::array<array2d<rgb_pixel> > images;
129
130
131
132
133
134
135
136
137
138
139
140
141
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        if (impl::contains_any_boxes(boxes) == false)
            throw error("Error, the dataset in " + dataset_filename + " does not have any labeled object boxes in it.");

        typedef scan_fhog_pyramid<pyramid_down<6> > image_scanner_type; 
        image_scanner_type scanner;
        unsigned long width, height;
        impl::pick_best_window_size(boxes, width, height, options.detection_window_size);
        scanner.set_detection_window_size(width, height); 
        structural_object_detection_trainer<image_scanner_type> trainer(scanner);
        trainer.set_num_threads(options.num_threads);  
142
        trainer.set_c(options.C);
143
144
145
        trainer.set_epsilon(0.01);
        if (options.be_verbose)
        {
146
            std::cout << "Training with C: " << options.C << std::endl;
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            std::cout << "Training using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Training with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (options.add_left_right_image_flips)
                std::cout << "Training on both left and right flipped versions of images." << std::endl;
            trainer.be_verbose();
        }


        unsigned long upsample_amount = 0;

        // now make sure all the boxes are obtainable by the scanner.  We will try and
        // upsample the images at most two times to help make the boxes obtainable.
        std::vector<std::vector<rectangle> > temp(boxes), removed;
        removed = remove_unobtainable_rectangles(trainer, images, temp);
        if (impl::contains_any_boxes(removed))
        {
            ++upsample_amount;
            if (options.be_verbose)
                std::cout << "upsample images..." << std::endl;
            upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
            temp = boxes;
            removed = remove_unobtainable_rectangles(trainer, images, temp);
            if (impl::contains_any_boxes(removed))
            {
                ++upsample_amount;
                if (options.be_verbose)
                    std::cout << "upsample images..." << std::endl;
                upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
                temp = boxes;
                removed = remove_unobtainable_rectangles(trainer, images, temp);
            }
        }
        // if we weren't able to get all the boxes to match then throw an error 
        if (impl::contains_any_boxes(removed))
Davis King's avatar
Davis King committed
181
            impl::throw_invalid_box_error_message(dataset_filename, removed, options);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

        if (options.add_left_right_image_flips)
            add_image_left_right_flips(images, boxes, ignore);

        simple_object_detector detector = trainer.train(images, boxes, ignore);

        std::ofstream fout(detector_output_filename.c_str(), std::ios::binary);
        int version = 1;
        serialize(detector, fout);
        serialize(version, fout);
        serialize(upsample_amount, fout);

        if (options.be_verbose)
        {
            std::cout << "Training complete, saved detector to file " << detector_output_filename << std::endl;
197
            std::cout << "Trained with C: " << options.C << std::endl;
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            std::cout << "Trained using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Trained with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (upsample_amount != 0)
            {
                if (upsample_amount == 1)
                    std::cout << "Upsampled images " << upsample_amount << " time to allow detection of small boxes." << std::endl;
                else
                    std::cout << "Upsampled images " << upsample_amount << " times to allow detection of small boxes." << std::endl;
            }
            if (options.add_left_right_image_flips)
                std::cout << "Trained on both left and right flipped versions of images." << std::endl;
        }
    }

// ----------------------------------------------------------------------------------------

    struct simple_test_results
    {
        double precision;
        double recall;
        double average_precision;
    };

    inline const simple_test_results test_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_filename
    )
    {
226
        dlib::array<array2d<rgb_pixel> > images;
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        simple_object_detector detector;
        int version = 0;
        unsigned int upsample_amount = 0;
        std::ifstream fin(detector_filename.c_str(), std::ios::binary);
        if (!fin)
            throw error("Unable to open file " + detector_filename);
        deserialize(detector, fin);
        deserialize(version, fin);
        if (version != 1)
            throw error("Unknown simple_object_detector format.");
        deserialize(upsample_amount, fin);

        for (unsigned int i = 0; i < upsample_amount; ++i)
            upsample_image_dataset<pyramid_down<2> >(images, boxes);

        matrix<double,1,3> res = test_object_detection_function(detector, images, boxes, ignore);
        simple_test_results ret;
        ret.precision = res(0);
        ret.recall = res(1);
        ret.average_precision = res(2);
        return ret;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SIMPLE_ObJECT_DETECTOR_H__