"git@developer.sourcefind.cn:OpenDAS/torch-cluster.git" did not exist on "7985cdd87ed89c2d4dea4ea39872b439089f0482"
simple_object_detector.h 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_ObJECT_DETECTOR_H__
#define DLIB_SIMPLE_ObJECT_DETECTOR_H__

#include "simple_object_detector_abstract.h"
#include "dlib/image_processing/object_detector.h"
#include "dlib/string.h"
#include "dlib/image_processing/scan_fhog_pyramid.h"
#include "dlib/svm/structural_object_detection_trainer.h"
#include "dlib/geometry.h"
#include "dlib/data_io/load_image_dataset.h"
#include "dlib/image_processing/remove_unobtainable_rectangles.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;

// ----------------------------------------------------------------------------------------

    struct simple_object_detector_training_options
    {
        simple_object_detector_training_options()
        {
            be_verbose = false;
            add_left_right_image_flips = false;
            num_threads = 4;
            detection_window_size = 80*80;
33
            C = 1;
34
            epsilon = 0.01;
35
36
37
38
39
40
        }

        bool be_verbose;
        bool add_left_right_image_flips;
        unsigned long num_threads;
        unsigned long detection_window_size;
41
        double C;
42
        double epsilon;
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    };

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        inline void pick_best_window_size (
            const std::vector<std::vector<rectangle> >& boxes,
            unsigned long& width,
            unsigned long& height,
            const unsigned long target_size
        )
        {
            // find the average width and height
            running_stats<double> avg_width, avg_height;
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                for (unsigned long j = 0; j < boxes[i].size(); ++j)
                {
                    avg_width.add(boxes[i][j].width());
                    avg_height.add(boxes[i][j].height());
                }
            }

            // now adjust the box size so that it is about target_pixels pixels in size
            double size = avg_width.mean()*avg_height.mean();
            double scale = std::sqrt(target_size/size);

            width = (unsigned long)(avg_width.mean()*scale+0.5);
            height = (unsigned long)(avg_height.mean()*scale+0.5);
            // make sure the width and height never round to zero.
            if (width == 0)
                width = 1;
            if (height == 0)
                height = 1;
        }

        inline bool contains_any_boxes (
            const std::vector<std::vector<rectangle> >& boxes
        )
        {
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                if (boxes[i].size() != 0)
                    return true;
            }
            return false;
        }

        inline void throw_invalid_box_error_message (
            const std::string& dataset_filename,
            const std::vector<std::vector<rectangle> >& removed,
Davis King's avatar
Davis King committed
95
            const simple_object_detector_training_options& options
96
97
98
99
        )
        {

            std::ostringstream sout;
100
101
102
103
            // Note that the 1/16 factor is here because we will try to upsample the image
            // 2 times to accommodate small boxes.  We also take the max because we want to
            // lower bound the size of the smallest recommended box.  This is because the
            // 8x8 HOG cells can't really deal with really small object boxes.
Davis King's avatar
Davis King committed
104
            sout << "Error!  An impossible set of object boxes was given for training. ";
105
            sout << "All the boxes need to have a similar aspect ratio and also not be ";
106
107
            sout << "smaller than about " << std::max<long>(20*20,options.detection_window_size/16) << " pixels in area. ";

108
            std::ostringstream sout2;
109
            if (dataset_filename.size() != 0)
110
            {
111
112
113
114
                sout << "The following images contain invalid boxes:\n";
                image_dataset_metadata::dataset data;
                load_image_dataset_metadata(data, dataset_filename);
                for (unsigned long i = 0; i < removed.size(); ++i)
115
                {
116
117
118
119
120
                    if (removed[i].size() != 0)
                    {
                        const std::string imgname = data.images[i].filename;
                        sout2 << "  " << imgname << "\n";
                    }
121
122
123
124
125
126
127
128
                }
            }
            throw error("\n"+wrap_string(sout.str()) + "\n" + sout2.str());
        }
    }

// ----------------------------------------------------------------------------------------

129
130
131
132
133
134
    template <typename image_array>
    inline void train_simple_object_detector_on_images (
        const std::string& dataset_filename, // can be "" if it's not applicable
        image_array& images,
        std::vector<std::vector<rectangle> >& boxes,
        std::vector<std::vector<rectangle> >& ignore,
135
        const std::string& detector_output_filename,
136
        const simple_object_detector_training_options& options 
137
138
    )
    {
139
        if (options.C <= 0)
140
            throw error("Invalid C value given to train_simple_object_detector(), C must be > 0.");
141
142
        if (options.epsilon <= 0)
            throw error("Invalid epsilon value given to train_simple_object_detector(), epsilon must be > 0.");
143

144
145
146
147
        if (images.size() != boxes.size())
            throw error("The list of images must have the same length as the list of boxes.");
        if (images.size() != ignore.size())
            throw error("The list of images must have the same length as the list of ignore boxes.");
148
149

        if (impl::contains_any_boxes(boxes) == false)
150
            throw error("Error, the training dataset does not have any labeled object boxes in it.");
151
152
153
154
155
156
157
158

        typedef scan_fhog_pyramid<pyramid_down<6> > image_scanner_type; 
        image_scanner_type scanner;
        unsigned long width, height;
        impl::pick_best_window_size(boxes, width, height, options.detection_window_size);
        scanner.set_detection_window_size(width, height); 
        structural_object_detection_trainer<image_scanner_type> trainer(scanner);
        trainer.set_num_threads(options.num_threads);  
159
        trainer.set_c(options.C);
160
        trainer.set_epsilon(options.epsilon);
161
162
        if (options.be_verbose)
        {
163
            std::cout << "Training with C: " << options.C << std::endl;
164
            std::cout << "Training with epsilon: " << options.epsilon << std::endl;
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
            std::cout << "Training using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Training with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (options.add_left_right_image_flips)
                std::cout << "Training on both left and right flipped versions of images." << std::endl;
            trainer.be_verbose();
        }


        unsigned long upsample_amount = 0;

        // now make sure all the boxes are obtainable by the scanner.  We will try and
        // upsample the images at most two times to help make the boxes obtainable.
        std::vector<std::vector<rectangle> > temp(boxes), removed;
        removed = remove_unobtainable_rectangles(trainer, images, temp);
        if (impl::contains_any_boxes(removed))
        {
            ++upsample_amount;
            if (options.be_verbose)
                std::cout << "upsample images..." << std::endl;
            upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
            temp = boxes;
            removed = remove_unobtainable_rectangles(trainer, images, temp);
            if (impl::contains_any_boxes(removed))
            {
                ++upsample_amount;
                if (options.be_verbose)
                    std::cout << "upsample images..." << std::endl;
                upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
                temp = boxes;
                removed = remove_unobtainable_rectangles(trainer, images, temp);
            }
        }
        // if we weren't able to get all the boxes to match then throw an error 
        if (impl::contains_any_boxes(removed))
Davis King's avatar
Davis King committed
199
            impl::throw_invalid_box_error_message(dataset_filename, removed, options);
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        if (options.add_left_right_image_flips)
            add_image_left_right_flips(images, boxes, ignore);

        simple_object_detector detector = trainer.train(images, boxes, ignore);

        std::ofstream fout(detector_output_filename.c_str(), std::ios::binary);
        int version = 1;
        serialize(detector, fout);
        serialize(version, fout);
        serialize(upsample_amount, fout);

        if (options.be_verbose)
        {
            std::cout << "Training complete, saved detector to file " << detector_output_filename << std::endl;
215
            std::cout << "Trained with C: " << options.C << std::endl;
216
            std::cout << "Training with epsilon: " << options.epsilon << std::endl;
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            std::cout << "Trained using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Trained with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (upsample_amount != 0)
            {
                if (upsample_amount == 1)
                    std::cout << "Upsampled images " << upsample_amount << " time to allow detection of small boxes." << std::endl;
                else
                    std::cout << "Upsampled images " << upsample_amount << " times to allow detection of small boxes." << std::endl;
            }
            if (options.add_left_right_image_flips)
                std::cout << "Trained on both left and right flipped versions of images." << std::endl;
        }
    }

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// ----------------------------------------------------------------------------------------

    inline void train_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_output_filename,
        const simple_object_detector_training_options& options 
    )
    {
        dlib::array<array2d<rgb_pixel> > images;
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        train_simple_object_detector_on_images(dataset_filename, images, boxes, ignore, detector_output_filename, options);
    }

246
247
248
249
250
251
252
253
254
255
256
257
258
259
// ----------------------------------------------------------------------------------------

    struct simple_test_results
    {
        double precision;
        double recall;
        double average_precision;
    };

    inline const simple_test_results test_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_filename
    )
    {
260
        dlib::array<array2d<rgb_pixel> > images;
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        simple_object_detector detector;
        int version = 0;
        unsigned int upsample_amount = 0;
        std::ifstream fin(detector_filename.c_str(), std::ios::binary);
        if (!fin)
            throw error("Unable to open file " + detector_filename);
        deserialize(detector, fin);
        deserialize(version, fin);
        if (version != 1)
            throw error("Unknown simple_object_detector format.");
        deserialize(upsample_amount, fin);

        for (unsigned int i = 0; i < upsample_amount; ++i)
            upsample_image_dataset<pyramid_down<2> >(images, boxes);

        matrix<double,1,3> res = test_object_detection_function(detector, images, boxes, ignore);
        simple_test_results ret;
        ret.precision = res(0);
        ret.recall = res(1);
        ret.average_precision = res(2);
        return ret;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SIMPLE_ObJECT_DETECTOR_H__